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Abstract. Self-location – recognizing one’s surroundings and reliably
keeping track of current position relative to a known environment – is
a fundamental cognitive skill for entities biological and artificial alike.
At a minimum, it requires the ability to match current sensory (mainly
visual) inputs to memories of previously visited places, and to correlate
perceptual changes to physical movement. Both tasks are complicated by
variations such as light source changes and the presence of moving obsta-
cles. This article presents the Difference Image Correspondence Hierarchy
(DICH), a biologically inspired architecture for enabling self-location in
mobile robots. Experiments demonstrate DICH works effectively despite
varying environment conditions.

1 Introduction

Self-location (the ability to orient oneself relative to a known environment) is
a fundamental cognitive skill [6]. It is also a requirement in mobile robotics
applications such as teach-replay navigation, where a robot is first led through
a route by a guide (the teach step), and must later autonomously retrace the
original path (the replay step) [1]. Visual teach-replay is subject to largely the
same challenges faced by living organisms, i.e., the need to account for variations
in visual stimuli within a given environment. Therefore, a case can be made for
self-location Biologically Inspired Cognitive Architectures (BICA’s).

The Difference Image Correspondence Hierarchy (DICH) is a cognitive archi-
tecture designed to enable self-location in mobile robots equipped with a single
monocular camera. Other BICA’s capable of self-location have been developed,
but often in the context of simulated environments that are very simplified [3], or
allow state data to be acquired directly instead of inferred from sensor inputs [4];
lack of clear ways to specify goals (e.g., setting destinations) is also a common
limitation [3, 4]. In contrast, DICH has been developed from the beginning to
operate in real-world robots and environments, relies exclusively on visual data,
and implements a learning model accommodating of goal-directed training and
operation.
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DICH is a continuation of previous work on visual search [7] and mobile robot
navigation [8]. The next section details the architecture’s design and fundamen-
tals, followed by experiments that demonstrate its effectiveness. The article closes
with a discussion on the results achievement and directions for further research.

2 Architecture

The DICH architecture was designed to work with a mobile robot equipped
with a single front-mounted camera, under the teach-replay navigation scenario.
During the teach step, the robot collects a video record of the trip, which is stored
to long-term memory; during the replay step, camera inputs are used along with
teach step data to update two working memory modules (the “similarity map”
and the “shift map”), from which estimates of the robot’s location along the
route, and possible drift from it, can be computed. The next subsections describe
each of the architecture’s components in detail.

2.1 Difference Images

Mammal vision requires continuous stimulus change to function properly: even
when the exterior world is static, fixational eye movements ensure the images
falling on our retinas never remain the same for long [5]. DICH seeks to capture
this principle through the use of difference images as its basic percept. Let It
be the instantaneous visual input at time t for a mobile robot as it advances
towards a landscape. Assuming reasonable conditions (i.e. a minimally stable
environment, smooth movement, etc.) It will vary gradually as the robot ad-
vances. Such changes can be quantified by computing the difference image Jt
such that:

Jt = |It − It−δ| , δ = arg min
δ>0
〈|It − It−δ|〉 ≥ τ (1)

Where the subtraction operator is defined for images as pixel-wise euclidean
distance (so e.g. subtracting RGB pixels will result in a single scalar value), 〈·〉
is the average operator and τ a system parameter.

Given an appropriate gap δ > 0 and absent of saturation artifacts, difference
images are largely invariant to ambient brightness, providing a degree of normal-
ization across illumination conditions; moreover, the amount of change will vary
depending on whether the robot is moving, which can be used as a self-motion
cue. Finding that appropriate gap is not trivial, though: too short a gap will re-
sult in a mostly empty image, too large and it may become impossible to relate
differences to actual scene elements. However, by constraining δ so that every
Jt will average a difference at least τ , a degree of consistency across difference
images can be achieved, even in the face of changes to physical parameters such
as the robot’s speed and direction of movement.
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2.2 Difference Image Pairing

A difference image implicitly denotes a location along a route as the pair of
viewpoints from which the raw images used to compute it were taken. Therefore,
DICH uses difference image matching to perform self-localization over the length
of a route – if current visual input matches a stored snapshot, the robot should
be at roughly the same place.

When animals look at their surroundings, their eyes dart among a small set of
salient points (e.g., corners or edges), which seem to provide enough information
for effective visual recognition. This behavior is modeled by Image Processing Al-
gorithms (IPA’s) that select small patches called algorithmic Regions-Of-Interest
(aROI’s) from input images [9]. Image matching can be performed for aROI’s in
place of whole images.

DICH uses aROI’s for difference image matching as follows. Let Ji be the ith

teach difference image and J′j the jth replay difference image. A list of salient
point image coordinates pj,k = (u, v) are selected from J′j as points of maximum
difference within square patches of side 2α + 1. The patches themselves are
extracted as corresponding aROI’s ρj,k. Now if Ji and J′j are spatially related,
then for each ρj,k, there must be a region of Ji not far from coordinates pj,k that
is similar to it. Therefore, for each salient point pj,k, a neighborhood φi,j,k of side
2β + 1 is extracted from Ji, and the similarity between Ji and J′j is defined as
the sum of similarities between each (ρj,k, φi,j,k) pair:

κs(Ji, J
′
j) =

∑
k

max
x,y

cos(ρj,k, φi,j,k) (2)

Where:

cos(A,B) = (A ? B) ◦ (A◦2 ? 1mB×nB )◦−
1
2 ◦ (1mA×nA ? B◦2)◦−

1
2 (3)

Is the sliding cosine similarity between AmA×nA and BmB×nB , for ? the
cross-correlation operator, ◦ and ◦ respectively the Hadamard (i.e. element-wise)
product and power operations [10], and 1m×n a m× n matrix with all elements
equal to 1. This is essentially a sliding version of the cosine similarity metric [2],
where the cross-correlation between A and B computes the dot product for every
translation of A over B, and the normalization factors are given by the other
two formula terms. Figure 1a illustrates the process.

In animal self-localization, visual cues are combined with a sense of self-
motion to produce reliable position estimates [6]. This is modeled in DICH by
plotting all values of κs(Ji, J

′
j) over a range (i0, j0) ≤ (i, j) < (i0 + h, j0 + w) as

a similarity matrix, and using linear regression to find a trend of high similarity
values over it. This trend is represented by a line lj = (mj , bj).

Difference image pairing can then be defined as:

g(J′j) = Ji | i = mjj + bj (4)

Figure 1b illustrates pairing function estimation from a similarity map.
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2.3 Shift Estimation

Difference image pairing estimates how far the robot advanced along the teach
route. The deviation from the original route can be inferred by computing the
shift between teach and replay images – a length of horizontal sliding of one
image over the other, such that features of both are “matched” as well as possible.
Because scenes may change between teach and replay trips (due e.g. to the
presence of moving elements), it’s not effective to compare images wholesale.
Instead, given a matched pair (Ji = g(J′j), J

′
j), columns of width γ are selected

from teach image Ji one at a time for comparison to J′j , and the resulting vectors
summed into shift vectors:

κh(Ji, J
′
j) =

∑
k

(0n ‖ cos(Ji[:, γk : γ(k + 1)], J′j)) � k (5)

Where ‖ and � are the vector concatenation and left shift operators, and
0n the zero vector of dimension n (for n equal to the width of J′j). Padding and
shifting of individual column similarity vectors is necessary to properly align
results (e.g., cos(Ji[:, 0 : γ], J′j)) can only detect right shifts).

A shift vector describes shift likelihoods: the central value indicates the likeli-
hood that no shift has taken place, while values prior to it represent the likelihood
of a shift to the right, and values following, of a shift to the left. Concatenating
successive shift vectors column-wise produces a shift map; see Figure 2b for an
example. A hill climbing algorithm can then be used to find a route of high
likelihood across it, which will indicate whether, and to which side, the robot is
drifting from the original route.

3 Experiments

A mobile robot equipped with a top-mounted camera was used to record a test
session composed of two trips – a reference or teach step trip, and a comparison
or replay step trip – in a corridor of about 20m length. Teach and replay steps
started from the same position and advanced in the same direction, but in the
teach step, after starting close to the left wall, the robot slowly drifted right until
stopping close to the right wall; whereas in the replay step the robot remained
close to the left wall for the duration of the trip. The corridor was empty during
the teach step, but 30s into the replay step three people come from behind the
robot, staying on the right side of the field of view until walking away 20s later.

A batch implementation of DICH was developed and applied to the video
records offline. System parameters were set to (τ = 15, α = 25, β = 49, γ =
16, w = 20, h = 50). In order to establish an initial location estimate over the
whole route, the first similarity map is computed over the first w replay difference
images and all teach difference images; after that, the estimate is iteratively
updated by recomputing the similarity map for the h teach inputs closest to
the latest pairing estimate and most recent w replay inputs. Ground truth data
was computed manually by comparing the frames of teach and replay step video
recordings.
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ρ j , k

J'jJi

(i)

(ii) =

x

y

max cos (ρ j ,k ,ϕi , j , k )ϕi , j , k
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(b) Similarity map

Fig. 1: Similarity map and trend computation. (a) Algorithmic Regions-of-
Interest and neighborhoods are extracted at given salient points (i); sliding cosine
similarity is computed for each (aROI, neighborhood) pair, and the maximum
value (indicated here by the dashed circle) is taken as the similarity for that pair
(ii). In this particular case, some salient points will produce weak responses,
since they fell on an element not present in the teach difference image (a pedes-
trian who crossed in front of the robot during the teach step). However, this may
still be compensated by the responses of the other points. (b) A similarity map
represents at each cell the similarity between replay (horizontal axis) and teach
(vertical axis) difference images. Darker shades of gray indicate higher similar-
ity. The white line indicates the identified matching trend across the map. Gray
lines indicate the estimated correspondence between replay and teach images.

(a) Similarity map (composite) (b) Shift map

Fig. 2: Test session results, displayed as (composite) similarity (a) and shift (b)
maps. Darker shades of gray indicate higher correspondence / shift likelihood.
Full lines over the maps represent estimated image correspondences / shifts, and
dashed lines, ground truth data. Horizontal axis is replay image index; vertical
axis is teach image index for the similarity map, and shift in pixels for the shift
map (with positive values indicating left shift, and negative values, right). The
displayed similarity map is actually a composite of several computations between
h teach and w replay difference images, combined in a manner consistent with
image indexes.
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As shown in Figure 2, estimates and ground truth agree well in both simi-
larity and shift maps; divergences arise occasionally, but always reverse later on.
Both image pairing and shift estimation successfully coped with the variation
in difference image change ratio, caused by the appearance of pedestrians in
the replay step (this is the source of the slope change in the estimate curve in
the middle of the similarity map). Results therefore indicate DICH was able to
successfully estimate the robot’s position along the route, as well as to identify
sideways drift, in the image domain.

4 Conclusions

This article presented the Difference Image Correspondence Hierarchy (DICH),
a biologically inspired cognitive architecture for enabling self-location in mobile
robots. Experimental results show adequate performance under a range of input
variations, suggesting there is merit in its premises. Currently the method’s main
weakness is the need to set parameters manually for optimal performance. How-
ever, research in the psychophysiology of vision may help determine reasonable
defaults. The method’s application in a robot navigation system (i.e. that would
allow a mobile robot to drive itself) is also meant as a topic for future work.

References

1. Burschka, D., Hager, G.: Vision-based control of mobile robots. In: Robotics and
Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on.
vol. 2, pp. 1707–1713 (2001)

2. Dumais, S.T.: Latent semantic analysis. Annual review of information science and
technology 38(1), 188–230 (2004)

3. Georgeon, O.L., Marshall, J.B., Manzotti, R.: Eca: An enactivist cognitive architec-
ture based on sensorimotor modeling. Biologically Inspired Cognitive Architectures
6, 46–57 (2013)

4. Madl, T., Franklin, S., Chen, K., Trappl, R.: Spatial working memory in the lida
cognitive architecture. In: Proceedings of the 12th international conference on cog-
nitive modelling. pp. 384–390 (2013)

5. Martinez-Conde, S., Macknik, S.L.: Fixational eye movements across vertebrates:
comparative dynamics, physiology, and perception. Journal of Vision 8(14), 28–28
(2008)

6. Moser, E.I., Kropff, E., Moser, M.B.: Place cells, grid cells, and the brain’s spatial
representation system. Annu. Rev. Neurosci. 31, 69–89 (2008)

7. Perroni Filho, H., De Souza, A.: On multichannel neurons, with an application to
template search. Journal of Network and Innovative Computing 2(1), 10–21 (2014)

8. Perroni Filho, H., Ohya, A.: Mobile robot path drift estimation using visual
streams. In: System Integration (SII), 2014 IEEE/SICE International Symposium
on. pp. 192–197. IEEE (2014)

9. Privitera, C.M., Stark, L.W.: Algorithms for defining visual regions-of-interest:
Comparison with eye fixations. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 22(9), 970–982 (2000)

10. Roger, H., Charles, R.J.: Topics in matrix analysis. Cambridge University Press
(1994)


