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Abstract— Effective detection of people is a basic require-
ment for robot coexistence in human environments. In our
previous work [1] we proposed a method for people detection
and position estimation using multiple layers of Laser Range
Finders (LRF) in a mobile robot. We extend our work by
introducing laser reflection intensity as a novel feature for
people detection, achieving significant improvement of detection
rates. In concrete, we propose a method for calibration of laser
intensity data, a method for segment separation using laser
intensity, and introduce two new intensity-based features for
people detection: the variance of laser intensity and the variance
of intensity differences. We present experimental results that
confirm the effectiveness of our multi-layered detection method
including laser intensity.
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I. INTRODUCTION

Laser Range Finders (LRF) are an important part of people
detection and tracking systems in surveillance and robdt an
human interaction systems. LRFs present important advan-
tages like high accuracy, wide view angles, fast scanning © d
rates, etc., and are becoming more accessible and safe for
usage in human environments. Due to safety regulationsig- 1: Multi-layered people detection: (a) two sensors per
applications using non class-1 lasers are mostly limited tgyer (bird’s-eye view); (b) two layers of sensors; (c) dete
low positions. Thus legs have been widely used for humaliPn of body parts in each layer, and (d) people detection.

detection and tracking [2-5]. Using LRFs in a multi-layered

arrangement to detect other complementary features (waifldeépendent layer is processed in parallel. Scan data is firs
chest, head, etc.) has been proposed recently [1, 6, 7]. divided into segments, for each segment we compute a set

Supervised learning using the AdaBoost algorithrﬁ’f features for classification of body parts from each person
(Schapireet al. [8]) has proven very successful for correctaround the robot (legs in the bottom layer and chests in the

detection people features from LRF segments [5, 7, 9]: usirfgP 1ayer. Fig. 1(c)). Finally detected parts are fused tecte

a set of geometrical features from LRF range data (e.g’€0Pl€ and their position (Fig. 1(d)). Our system is toléran
width, linearity, curvature, etc.), define weak classifiarsi to. occlu3|on§ _by keeplng an association of current scan data
then train a strong classifier. with the position of previously detected people.

When compared to other sensors (e.g., vision), a limitation We extend further our work by introducing laser reflec-
of LRFs is that range data is not enough to distinguisfon intensity as a novel feature for people detection and
physically different objects when they are in contact (eag. fOr segment separation. To our knowledge no other work
person leaning against a wall), LRF scan points get combin&@nsiders laser reflection intensity for people detectidre
into one big segment even if a very small jump distanc&ontributions of this work can be summarized as follows:
is used. Existing solutions include adding time dimension « Introduction of laser reflection intensity as a new feature
to LRF segments and measure segment motion between for people detection
consecutive scans [5], keeping tracks for each target [10-« A method for separation of segments using laser reflec-
12], or else using normal vectors and 3D LRF [13]. tion intensity

In [1] we introduced a multi-layered people detection « A simple technique for calibration of laser reflection
system for a people group companion robot. Four LRF intensity for low power LRFs
sensors are ms'talled in a mpblle robot, arranged in pairsthe rest of the paper is as follows: Section Il briefly
in two layers (Fig. 1(a) and Fig. 1(b)), and data from eacQegcrines our people detection system. In Section Il we

explain and propose laser reflection intensity as a new tool
Intelligent Robot Laboratory, Graduate School of Systems! anfgr people detection. Section IV presents experimentaili®s
Information Engineering, University of Tsukuba, 1-1-1 Tendai, . . .
Tsukuba City Ibaraki Pref., 305-8573, Japan, +81-20-g8as6 Of our people detection method and finally, conclusions and
{acs, ohya, yut a}@r oboken. esys. t sukuba. ac. j p future works are left for Section V.




[l. SYSTEM OVERVIEW good performance and small classification errors. We tcaine

For each layer, sensors facing opposite directions (s€¥0 Separated strong classifi€téop to detect chest segments
Fig. 1a) are fused [1] to produce 30° representation of IN the top layer andpotom to detect legs in the bottom layer
robot's surroundings. Fused data is divided into segment§€€ Fig. 1c). Finally we label segmentscasdidate using
using an adaptive threshold [1] to find breakpoints (jum@he output from bott#io, and Haottom
distance). For every segmefif we compute a set af fea-
turesh(.S;) € R™ to judge whether the segment corresponds
to body part (chest or leg). Based on Arretsal. [5], we
defined the following list of features from every segment:

1) Number of points (V) of the segment.

2) Width (w), longest side of the segment’s bounding box
w = max(W, H), with W and H the sides of the box.

3) Size ratio (¢), ratio of the sides of the segment’s
bounding box/ = %

4) Linearity (L) variance of residuals of best fitting line.

5) Circularity (c) variance of residuals of best fit circle. Fig. 2: Walking model and layer fusion: (a) separation

6) Radius (R), from the best fitting circle. between legs\ at sensor height, and (b) search area for

7) Ellipticality (e), variance of residuals of best fit ellipse. association.

8) Boundary length (bl), average distance between points To combine candidate segments from both layers (see

110cm

.,

bl =3 S0 D(fis i) Fig. 2(a)), we define a search radiushaf= 3 +¢, according
9) Boundary regularity (br): standard deviation of the to the separation between legs= 2(L cos(a) — k) tan(a)
boundary length. [1] and for some biag. The chest segment is projected into
10) Mean curvature (%): mean of the curvatures; from  the bottom layer (bird's-eye view in Fig. 2(b)) to search for
the triangle Afi—1fifi+1, every three pointsk; = the corresponding leg(s). If the distance from the chestecen
D(fi,i,f,i)D(fijﬁl)D(fi,l,f,iﬂ)a A triangle’s area. to the furthest leg segment poind;(and ds in Fig. 2(b))
11) Mean angular difference (¢): mean of the angleg; is less than), we successfully detect a person. We set
every three points a8; = £(fi—1 fi, fifi+1)- X\ = 35.42¢m for normal walking speed angl= 12cm.

12) Normalized number of points (IV), the ratio of the For every persor?; the center of the chest ellipse is used
actual number of points and theAmaximum expectegds the expected position; = [ Ti i ]T of the person
number of points at a given rangd, = M2 0/2) - 5n the radius\, to define the initial covariance matrix of
where p is the range to the segment centeér,is the actual positiorE; = A,I. Every newly detected person
the angular resolution of the sensor amg. is the P! in time ¢ is associated with a known perséfj~"' from
maximum expected width of a person. a list P*~' from time ¢t — 1. To achieve this association,

Following the description in Arrast al. [5], we use the for every new persor®! we find the closest) ' using
generalized AdaBoost algorithm to train a strong classfiier the Mahalanobis distanc&i, k) with the estimated positions
to classify body parts. For that we define a setofabeled (uf,xt) for P and (uf ', %4 ") for ;' If the minimum
training examplest’ = ((h(S1),%), ..., (1(Sm),lm)) With — d(i, k) is smaller than somd,,,, then P! and Pt are
li € {+1, -1} the segment’s label whete= +1is for pos-  associated in the new lig’, elseP! is regarded as a new
itive examples (a person) ad= —1 for negative examples person includedp’.
(an environment object). Following Martinez Mozesal. Tolerance to occlusions is achieved by relaxing this data
[7], to define labels oft’ we set an obstacle free area aroungyssociation to allow single body parts, this is candidate
the robot, any segment which enters this area is automigticakegments for which no corresponding part could be found in
|ab.e|ed a5+1 and the rest as-1. The ﬁnal Strong Classifier the opposite |ayer, to become associated to known persons
Hs: (partial association). In the current implementation wetetd

: T ) . : .
H(S) = sign (thl wtgt(S)) (1)  only partial association for chest segments since ocaigsio

- . are much more common in the bottom layer.
The weak classifier function,(S) evaluates the-th feature 4

ht(S) as follows: [1l. LASERINTENSITY FORPEOPLEDETECTION
+1if s:he(S) < 404, Most LRF sensors provide reflection intensity data for
() = o every laser beam. This property has been rarely used, one
905 =9 | otherwise 2 laser beam. Th has b ly used
' pioneer work using laser intensity from a vehicle is attréal

AdaBoost learns the parameters:which is a weight applied to Hancock [14], physical models of laser reflection of
to the weak classifieg;, 0; the threshold for the featurk, their sensor were proposed according to the differences in
and s; € {+1,—1} the sign defining the direction of the surface albedo, roughness, range to target, etc.; witardiit
inequality. The number of weak classififsthat form the calibration models, according to the type of surface to scan
final strong classifier was defined @s= 100 which allows from the vehicle (e.g., asphalt), they were able to extrizetrc



intensity images. Recently laser intensity is gainingriesé Using Egq. 3 as the maximum expected intensity, we
Nuchteret al. [15, 16] uses range and intensity data togetherormalize (calibrate) the actual intensity valljeof the i-th
with Haar-like features for object classification. In Monte scan pointp; as:
merlo et al. [17] laser intensity is used for extracting road (pi) = I; 4)
lanes from an autonomous vehicle, based on the reflection ! Fo(pi)
difference of asphalt and road lanes. . .

Different from related works [14-17], where high—powerB' Laser Intensty.and People Detection )
laser sensors for long ranges are used (the Z+F laser for'Vhen two objects stand very close their range-based
ranges up to 400m, the SICKVS 200andLMS 291-S14up Segments get combmed and cannot be _detected mdw@gally.
to 80m, and the RIEGILMS-Q120up to 150m), instead we From laser reﬂgcuon, one .object resultmg from combmmg
use low-power laser scanners: the HokWBG-04LX range W0 or more objepts with c_ilfferem reflection pro_perUestH
scanner, with a maximum range of 5.6m. The intensity valugave a larger variance of intensity value§ resulting from
in the URG-04LX decays very quickly with range (Kawata Mixing the _mtensmes_ of the_ individual objects. Furthens, _
et al. [18]), so same object will show different laser intensitylf We consider how intensity changes between consecutive
values in rather short ranges; therefore we require torzatib POINts p; and pi,, in a segmentj using the difference
the laser intensity response before using it. D;(i) = I(pj) — I(pj,,), we can define théntensity uni-

According to [18], the reflected laser arrives at the sessorformity of an object by thevariance of intensity differences
photo-diode with low power and it is processed through files: if the object has uniform reflection (i.e., a smooth
ters, correction tables and amplifiers in the sensor's iticu  SUrface with a single color) then?, will be small as
For any laser beam, if the amplified laser intensity is oveihe differences tend to be small. Theriance of intensity
some internal threshold, the sensor will report the range dadifferences between points on a segments:
for that beam otherwise it is regarded as out-of-range in the N
sensor output. In consequence, the physica_\l laser inyensit U%j = %Z (Dj(i) — ,uD]-)Q (5)
and the sensor’s intensity output are not linearly related, i—1
existing models of LRF intensity cannot be used.

where pp; is the average of such difference over all the
points in segmentj. After analyzing intensity data from
people and environment objects, we found that the variance
The URG-04LX presents a characteristsgmoid curve o2 is large for all the segments from people, even cases of
for intensity decay with range. Based on ti@mpertz a person very close to another object (merged). This large
growth function[19], we defined the decay function forvariances2 usually comes from large values of the variance

A. Calibration of Laser Intensity

intensity as a function of range as: of calibrated intensityr? which provides a measurement the
) variations of intensity (i.e diffuse reflection) of an objec
Fp(i) = a (1 —exp(bexp (cpi))) (3)  Therefore, we extended the list in Section Il with the

where) is thei-th beam’s rangeg is the upper asymptote, following new features for p;eople detection:

b andc (both negative numbers) are decay parameters. Nonl3) Intensity variation (o7), the variance of calibrated
linear least squares was used to find the paraméiebsc). Intensity.

This characteristic sigmoid form can be clearly apprediate ~ 14) Intensity uniformity (3), the variance of differences
of calibrated intensity as in Eq. 5.

3500 Intensity dato | — Using AdaBoost we train two new strong classifi@t{"gp and

3000 Sigmoi Curvea;pgmo_s Hyowom (ONE per layer) including these new intensity-based
a = .

2500 b= _-19.435 features.
¢ = —0.000987]

We are interested in detecting people even when their
LRF segments are merged with other objects. To detect such
person-merged segments using only range information, an
intuitive method will be to look for wide segments (more
than some maximum widtho,,.,) that are not straight
051000 2003__3000_ 4000 5000 6000 lines like walls (a size ratid under some/y,.,); however

(Il-gange %eré . . .

several large and irregular objects like corners, bookvaisel
etc., conform to that test. To improve the merged segment
detection test, we can use additionally intensity infoliorat
Fig. 3. This curve was obtained from a white targety(982, and look for segments with large? (varianceo? over
0.13nm white bond paper) with an angle of incidence clossome¢3, ). The valueswyax and /i, are defined as
to zero (vertical error bars for two standard deviati®@s the maximum threshold8,, and é, learned for the strong
data was collected during 6@t each range), the continuousclassifierHqp, a%mm from the classifier]-lﬁop.
curve corresponds to the functidh, fitted to white paper For separation such person-merged segments, consider
data with the given parameters. two different objectsi and j which intensity difference

R? =0.99751

Intensity
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Fig. 3: Characteristic intensity data by varying distanod a
sigmoid curve for the URG-04LX sensor.



X (mm) the breakpoint are shown. This method works when there
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is a difference in intensity uniformity in the two segments,
if the two distributionsD; and D; are rather similar then
(a) Separation is inaccurate.
Given our intuitive method for merged segment detection
based the segment width, size ratio/ and variancer3, and
the proposed method for segment separation, we formalize
our merged segment detection and separation in Algorithm 1,

Y (mm)
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Scan point number

S

0.6 T T
Gj 92 ¢ considering also the case of multiple merged objects.
i y
= ' [} T i -
5 0l o ..'.....'...n. o' .o..O %eo R ) Algorithm 1 Intensity-based segment separation
§ 01 ° ° B
E 92, : , , , , , L o0 1: for every non-candidate segme$it do
40 40 40 S0 50 80 50 50 50 56 20 if ; < lpax @andw; > wiax then /*is not a person*/
Seanpontumber 3 if 03, > 03, then [*intensity is not uniform*/
o 4: SeparateS; into S; ; and.S; » using EM
gig 5: Feature extraction & classification fdf; 1, S; o
' 6 ReplaceS; by S; 1 andsS; » in the list of segments

Diff. Calibr. Intens. (D
o
N

03 .
(Y - /*S; 1 and S; o are also subject to merged seg-
| e T I - ) i .2
o “4#( © ments check*/
530 540 550
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Scan point number 8: end if

. end for

Fig. 4: Segment separation: (a) scan data in Cartesian o
ordinates, (bYD data, (c) EM for segment separatiorQ™
estimated mean of each Gaussian; ‘breakpoint.

IV. EXPERIMENTAL RESULTS

We use four HokuyoURG-04LX range scanner sensors,
D is normally distributed, i.e.D; ~ AN(up, 0% ) and €ach operating at ¥z covering distances up to 6
D; ~ N(up,,0% ), with mean up and Variar{ceg%_ angular range of240° and angular resolution 00.36°.
Consider also that both objects are in contact so that théjlis sensor uses a near-infrared (NIR) solid-state lastr wi
form one segment of scan data. The intensity distribution of85um wavelength. For data processing and robot control we
the combined objects is th@aussian Mixture M of both Use a notebook computer with an Intel Core 2 Duo processor

individual intensity distributions: at 1.837Hz, 2GB of RAM, running Linux (kernel 2635)
as operating system. The processing time from sensor fusion
M(x) = w; P(x[0;) + w; P(x|6;) (6)  to people detection was in averagess2 fast enough given

with x € D,; and P the probability density function and the the sensor's scanning speed of &00 o ,
mixture weightsw; andw;. The task of separating merged Normally, URG-04LX's range data consists in 682 points

segments can be considered as the problem of separatfigguiary ordereg from right to left and with an angular
the combined intensity distributiod;; for objectsi and resolution of0.36°. However, in order to obtain range and

j which implies estimating the unknown parametefs:— intensity simultaneously from the sensor, the number of
<MD“0’%), 0, = <M'D]-7Uf2p,>: with a known parameter SCan points decreases to one half (341 points) and the

J angular resolution becomés72°. LRF data was obtained

N = 2 the number of objects that define the mixture. We usg'"; . | ’ . '
the Expectation-Maximization (EM) algorithm to estimat®; ~ USINg this configuration. Data was obtained after warming up
e sensors for about 6@ns to avoid range and intensity

and@; and then we separate data into respective distributions® Wi
D; and D;. After separation of difference of intensity datadrifing due to changes in internal sensor temperature, [20]
into respective distributions, the breakpoint is definedhas N this work we do not attempt temperature calibration of
average of the last point ifd; and the first point irD,. laser intensity.

In Fig. 4 we present separation of a long segmen.t from tV\.IR. Multi-layered People Detection
persons standing very closed (merged). To ease visualizati i ] ) i
in Fig. 4(a) we include segments’ data in Cartesian coordi- We obtained e_>_<per|mental data from 3 different enwiron-
nates (the scan point number axis is also included), thelactd"eNts and conditions for a robot and a group of people:
breakpoint (labeled manually) is indicated. In Fig. 4(b) we e A cluttered area (“Cluttered”)
show the graph of differences of intensity) for the merged ~ « Several people around the robot (“Crowded”)
segments, each segment has different uniformity: points one Robot moving with people narrow hallways (*Mobile”)
the left half of Fig. 4(b) are tighter (vertical distanceween We present pictures of the different scenarios in the left
points) than those on the right. In Fig. 4(c) we use EM focolumn of Fig. 5, the robot position is marked with an
separation with points separated into respective digtobs, arrow. The “Cluttered” test (Fig. 5(a)) consists in a wide
the estimated means and covariance ellipses (Wrjoand area with some cluttering (chairs, dust bins, panels) cagusi



occlusions in the bottom layer, here two persons moveskveral environment objects (particularly block windows)

around the robot, moving in front and behind the obstaclesiere misclassified as people (9.4% false positive rate) and
The “Crowded” test (Fig. 5(b)) is a wide environment with nopeople walking close to the walls largely accounts for the

cluttering but includes 12 people of diverse sizes and ekth 13.2% false negative rate.

colors moving around the robot. Finally the “Mobile” test

(Fig. 5(c)) consists in long and narrow passages with clut- TABLE I: Multi-Layer detection rates
tering (shoe—racks_, gmbrella stands, stairways, etc.grevh Test Trie False False
the robot moved inside a group of three persons (operated Detection | Positive | Negative

Cluttered 89.2% 7.5% 3.3%
Crowded 85.4% 3.0% 11.6%
Mobile 77.4% 9.4% 13.2%
Cluttered| 92.6% 4.2% 3.2%
Crowded 90.7% 2.6% 6.7%
Mobile 88.2% 6.7% 5.1%

by remote control), this case presented also occlusions and
frequent merging of segments between people and walls.
In the right column of Fig. 5 we include snapshots of our
detection system (darker points correspond to top layar). |
every figure detected persons are labeled®’aand marked
with a cylinder.

We present the range-based detection rates—without inte®- People Detection Using Intensity
sity feature_s—for every case in the upper part of Table | (row Using same scan data from the previous test scenarios,
!abeled “without”), scan segments. were manually Iabele@e repeated the detection evaluation but this time usirey las
into person or not-person to establish t_he ground truth: Thefiection intensity (features? ando?2,, and segment separa-
“Cluttered” test consisted in 473 multi-layer observasion oy ‘petection results for every case are summarizeden th
(parall_el scans) and a total of 18172 segments, the "iSver part of Table | (row labeled “with”). In the “Clutteréd
detection rate was 89.2%, false positive rate was 7.5% M0Sigt the number of false negatives did not changed much due
due to misclassification of some columns, poster panels a the same problem explained above, the true detection rate
curtains in the environment, and. a false negative rate' creased 3.4%. In the other tests, higher increase in tlee tr
3.3% due to people walking behind panels and not beinge cion rate was achieved: 5.3% for the “Crowded” test and
detected immediately after reappearing. The “Crowded’ €30 8% for the “Mobile” test. Although features? and o2,

consisted in 164 observations (6351 segments) for a i ted to increase the detection rate, segment separa
detection rate of 85.4%, complete occlusions (people walki ¢, hyif ted importantly in reducing the false negativeesat
behind people and very close) is largely responsible for t%isdetections).

11.6% false negative rate. Finally the “Mobile” test had 823

observations (27662 segments) for a detection rate of 7,7.4%, gngle-layered People Detection

With Without

To compare results of our multi-layered people detection
system (with and without laser intensity), we include the
detection results of a single-layered detection system for
the four test environments. Using log data from the same
experiments, we selected all candidate segments detegted b

@ top | i + i
p layer strong classifiertop and Hyop as valid persons.

TABLE II: Single-Layer detection rates

Test True False False
Detection | Positive | Negative
Cluttered| 67.3% 21.2% 11.5%

o) 3| Crowded | 76.7% | 4.3% | 19.0%

-‘é’ Mobile 60.1% 19.7% 20.2%

Cluttered| 75.5% 18.5% 6.0%

=| Crowded | 86.3% 4.5% 9.2%

=| Mobile 70.3% 17.0% 12.7%
_ In Table Il we report the single-layered detection results,
. 71RO, without using laser intensity features in the upper part and
e i (c) using laser intensity in the bottom part. As presented, the
) . 'fi" true detection rates for all the experiments are by far lower
R to those of our multi-layered system, however using laser

intensity improves the detection results in the singlestay
system. False positives do not decrease much even by using
laser intensity, due to misclassification in the singlectay
system; the multi-layered system achieves better detectio
rates with smaller misclassification rates.

Fig. 5: Scenarios and results of three different exper
ments: “Cluttered” test (a) detected persons Afeand P1;
“Crowded” test (b) 10 out of 12 persons detect®d to
P9 (missing persons marked with circles); “Mobile” test (c)
detected people arB0, P1 and P2.



V. CONCLUSIONS ANDFUTURE WORKS

People detection using multi-layered LRF sensors and
laser reflection intensity was was covered in this work[10]
AdaBoost was used to train a strong classifier to detect body
parts, candidate segments are combined for people detectio
and position estimation. Two new features were introduced

improving people detection: intensity variation and irsién

[11]

uniformity. Laser reflection intensity was also introduded
solve the problem of separation of merged segments. By
analyzing the intensity uniformity we separate two objects
merged together. As laser intensity decays with range a
calibration method was also introduced.

As future works, the possibility of person identification[12]
using laser reflection intensity will be studied, and Multi-
ple hypothesis tracking (MHT) will also be considered for
tracking. Other future steps of this research include robot
navigation inside the people group with assignment of roles
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