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Abstract: This paper presents an image processing
method for an autonomous mobile robot indoor naviga-
tion system using fluorescent lights. The self-localization
of the vehicle is done by detecting the position and ori-
entation of fluorescent tubes located above it’s desired
path thanks to a camera pointing to the ceiling.
A map of the lights based on odometry data is built

in advance by the robot guided by an operator. Dur-
ing the teaching of the environment, the robot performs
autonomously lights detection and adds appropriate in-
formation for each landmark to the lights’ map it is
building. Then a graphic user interface is used to de-
fine the trajectory the robot must follow with respect to
the lights. While the robot is moving, an image process-
ing algorithm similar to the one used during the teaching
step is used in order to compare the position and orien-
tation of the detected lights to the map values, which
enables the vehicle to cancel odometry errors.

1. Introduction

When a wheel type mobile robot navigates on a two
dimensional plane, it can use sensors to know its
relative localization by summing elementary displace-
ments provided by incremental encoders mounted on
its wheels. The main default of this method known as
odometry is that its estimation error tends to increase
unboundedly[1]. For long distance navigation, odometry
and other dead reckoning solutions may be supported by
an absolute localization technique providing position in-
formation with a low frequency.
Absolute localization in indoor navigation using land-

marks located on the ground or on the walls is sometimes
difficult to implement since different objects can obstruct
them. Therefore a navigation system based on ceiling
landmarks recognition can be thought as an alternative
to this issue.
The navigation system we developed consists in two

steps. In the first step, the vehicle is provided with
a map of the ceiling lights. Building such a map by
hand quickly becomes a heavy task as its size grows.
Instead, the robot is guided manually under each light
and builds the map automatically. The second step con-
sists in defining a navigation path for the vehicle and
enabling its position and orientation correction when-
ever it detects a light recorded previously in the map.
Both first and second steps require fast and robust im-

age processing algorithms.
Since the map built by the robot is based on odometry

whose estimation error grows unboundedly, the position
and orientation of the lights in the map do not corre-
spond to the reality. However, if the trajectory to be
followed by the vehicle during the navigation process is
defined appropriately above this distorted map, it will
be possible for the robot to move along any desired tra-
jectory in the real world. A GUI has been developed
in order to facilitate this map-based path definition pro-
cess.
We equipped a mobile robot with a camera pointing

to the ceiling. During the navigation process, when a
light is detected, the robot calculates the position and
the orientation of this landmark in its own reference and
thanks to a map of the lights built in advance, it can es-
timate its absolute position and orientation with respect
to its map.
We define the pose of an object as its position and

orientation with respect to a given referential.
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Figure 1. Target environment consisting of lights of different
shapes in a corridor exposed to luminosity variations due to
sunning.

2. Fluorescent tube detection

2.1 Fluorescent tube model

It is natural to think of fluorescent tube as a natural
landmark for a vision-based process aimed at improving
the localization of a mobile robot in an indoor environ-
ment. Indeed, problems such as dirt, shadows, light re-
flection on the ground, or obstruction of the landmarks
usually do not appear in this case.
One advantage of fluorescent tubes compared to other

possible landmarks located on the ceiling is that once
they are switched on, their recognition in an image can
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Figure 2. (a),(c) Typical camera images of the ceiling of a
corridor containing a fluorescent light. The axis of the camera
is perpendicular to the ceiling. (b),(d) Binarized images.

be performed with a very simple image-processing algo-
rithm if we suppose that they are the only bright ele-
ments that are permanently found in such a place.
When a 256 grey levels image such as the one shown

in Fig.2.a containing a fluorescent tube is binarized with
an appropriate threshold 0 ≤ T ≤ 255, the only element
that remains after this operation is a rectangular shape
(Fig.2.b). If we suppose that no more than one light at
a time can be seen by the camera located on the top of
the robot, a fluorescent tube can be modeled by a given
area N corresponding to the number of pixels brighter
than a thresholded appearing in the image of the ceiling.
This hypothesis which is validated in most traditional
corridors leads to simple image processing algorithms as
we will see below.

2.2 Image thresholding

When the robot is guided manually in a new environ-
ment in order to build a map of the lights, it has to look
by itself for possible landmarks located on the ceiling.
It does so by taking pictures of the ceiling regularly and
analyzing each of them to detect if a light appears in the
image or not. The first step of the image processing con-
sists in finding the appropriate threshold that would lead
to a binarized shape corresponding to a light eventually
present in the image.
If we compare the histogram of a ceiling image con-

taining no bright object with a ceiling image containing
a fluorescent light, we notice that both of them contain
a peak corresponding to the predominant grey levels of
the image. See Figure 3.a,b for an illustration of both
cases. Yet, the number of pixels brighter than the upper
limit of the peak is very small in the case of an empty
ceiling image whereas it is greater in the case of a light
image. In the latter case, these pixels define the shape
of the fluorescent light included in the image. Figure 3.e
and f are a zoom along the vertical axis of Figures 3.c
and d. They show clearly this property.
Therefore determination of the threshold and the de-

tection of the presence of a light in the image can be
performed as follows :
• Compute the image histogram.
• Select the threshold as the grey level where the de-
creasing half part of the peak goes under a certain
pixels number value. This pixels number value was
set to 50 in the experiment we made and does not
have to be set with a great precision as we will jus-
tify in next section.

• Compare the number of pixels brighter than the
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Figure 3. (a) Histogram of a ceiling image containing a light,
(b) Histogram of a ceiling image without light. (c) Zoom of
(a), (d) zoom of (b). Horizontal axis : grey level (0-255),
Vertical axis : pixels number.

threshold to a given value. If this number is greater
than the value, then the image contains a bright ob-
ject and further image processing is done. If not, we
consider that no light is contained in the image, the
image is ignored and another image is taken before
performing the same light detection algorithm.

3. Light pose computation for map build-
ing

3.1 Incomplete light elimination

In order to take advantage of lights detected during the
learning step for the navigation process, the robot has to
store in the map the pose of a new light whenever it de-
tects it. Since it is not possible to determine completely
the pose of a light not fully included in an image without
making hypothesis concerning its shape and size, images
containing lights touching the border must be filtered at
first. Figure 2.c shows a picture taken by the robot dur-
ing the learning process which lead the light detection
algorithm to keep these images for further image process-
ing, but which can not be used to determine the position
of the landmark.

3.2 Distortion correction

Once binarized images containing lights touching the
border are eliminated, an algorithm is used to correct
image distortion before determining the pose of the land-
mark in the image. Distortion correction enables to com-
pute the pose of the light in the image with a better pre-
cision, especially when the binarized shape is not cen-
tered in the image. This image processing step involved
in our system requires more time than the other algo-
rithms. However, it should not penalize the teaching,
nor the navigation process.
The transformation between a pixel location in a non-

distorted image and its location in a distorted one is
approximated by polynomials of degree 3 whose coeffi-
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Figure 4. Fluorescent light located on the border of the
image. (a),(b) original and binarized images before distortion
correction, (c),(d) after distortion correction. (e) Moment-
based features of a fluorescent tube.

cients are computed in advance. In order to avoid the
computation of the polynomials giving the coordinates
a pixel in a normal image would have in a distorted one
for each pixel whenever an image is taken, the x and y
offsets for each pixel are computed in advance and stored
in memory. By doing so, the gain of time on the system
we developed is about 11.8 seconds for each image.
Figures 4.a,b,c,d shows an image containing a fluores-

cent tube located on the border before and after distor-
tion correction. Distortion correction can not be ignored
unless the robot is supposed to navigate exclusively right
under fluorescent lights.

3.3 Light pose in the image

The location of the tube’s centroid L in the image as
well as the orientation of its least moment of inertia axis
θL
i are computed using the moment-based features of the
binarized shape ∆, as shown in Fig.4.e according to the
following equations.
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Where µp,q =
∑

(x,y)∈∆(x − XL
i )

p(y − Y L
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q stands for
the (p, q) order central moments of the shape ∆ (N is
the pixel number of the binarized shape). This method
based on the statistical properties of the image gives pre-
cise information without requiring edge detection, noise
filtering or any time consuming algorithm. Furthermore,
the threshold used to binarize the image does not have
to be set precisely with this approach. In the case of
the image given in Fig.3.a, a threshold located around
50 would only result in a translation of a few pixels of
the shape centroid in the image and would not affect its
orientation.

3.4 Shape recognition

Although it is possible to compute the light cen-
troid position with the previous equations whatever
the light’s shape might be, non rectangular fluorescent
lights require particular attention concerning the com-
putation of their orientation. We chose to ignore the
result of the equation giving light orientation in the
case of square and round shaped lights as shown in
Fig.1.b,c. The distinction between a rectangular and

non-rectangular light is done by comparing the ratio∑
(x,y)∈∆

[(x−XL
i ) cos(θL

i +90o)−(y−Y L
i ) sin(θL

i +90o)]2∑
(x,y)∈∆

[(x−XL
i ) cos θL

i −(y−Y L
i ) sin θL

i ]2
to 1. A

ratio close to 1 means the inertia of the shape with re-
spect to the minimum inertia axis is the same as its iner-
tia with respect to an axis perpendicular to the minimum
inertia axis, hence that the shape is not rectangular.

3.5 Light pose in the robot referential

Once the pose of the landmark in the image is obtained
it has to be converted in the robot referential. The ori-
entation of the light can be easily obtained by taking
into account the flattening rate of the image if neces-
sary. Nevertheless the conversion between the light’s
centroid location in pixels in the image and its location
with respect to the vehicle in meters requires to know
the distance between the camera and the ceiling. The
robot should be able to perform this operation during
the learning process without being given in advance the
ceiling height by an operator.
To achieve this purpose, two successive pictures of

the ceiling are taken from two different places by the
robot. By doing so, it is possible to compare how much
the binarized shape centroid has moved in the image to
the distance ran by the robot between the two shots.
Once this conversion rate is obtained, it is possible to
determine the light’s location in the robot referential and
finally in the global referential where the map is being
built. The conversion rate is recorded as a map data
for each light so that the robot can correct its position
during the navigation process by taking only one shot of
the landmark recorded in its map.
If a light is detected more than one time by the robot

while it is taking pictures of the ceiling, the light is
recorded only once in the map, provided the odometry
errors made by the robot between the different observa-
tion places are not too big.

4. Lights map based navigation

When the teaching phase is completed, the robot holds
a map of the lights that can be used later for the au-
tonomous navigation process. The image processing al-
gorithms involved in the navigation process are identical
to the learning process algorithms but do not require two
shots of the ceiling to determine the relation between the
image metric and the robot’s referential metric.
During the navigation process, the robot starts taking

pictures of the ceiling whenever odometry data get close
to the position of a light recorded in its map. When a
light is found, the robot pose in the map referential is
corrected by using the light pose in the map and the rel-
ative pose of the robot with respect to the observed land-
mark. Since the calculation of the robot’s absolute pose
estimation from an image is time consuming, retroactive
data fusion with odometry data is necessary[3]. This
function is achieved thanks to an algorithm developed
previously in our laboratory[2].



5. Implementation and experiment

We implemented this system on the YAMABICO
robot[4] developed in our laboratory. The sensors used
by the robot to estimate its pose are optical encoders
mounted on the wheels and a board CCD black and
white camera facing the ceiling. The navigation program
and the absolute pose estimation program based on fluo-
rescent lights are implemented as independent modules.
It is therefore possible to run simultaneously other pose
estimation programs based on different landmarks and
using different sensors without any modification of the
existing vision-based module.
The validity of the proposed navigation system has

been shown by making experiments in the corridor
shown in Fig.1 at different times of the day. The robot
was first guided under each light in order to build the
landmarks map. Then it used the map and a path de-
fined above it to navigate in the middle of the corridor
until a goal point and come back to its starting point.
The maximum speed of the robot was 35 cm/s and to-
tal distance on one way was about 50 meters. On the
robot’s path 24 fluorescent tubes of different shapes were
present, separated by a distance varying from 2.2 meters
to 4.5 meters.
The experimental results of one of those experiments

are shown in Figure 5 where the bold line corresponds
to the odometry data of the robot. When a light is
found, the absolute pose of the robot is corrected af-
ter a certain delay represented by the distance between
the marks ‘+’ and ‘×’ respectively. The table below
gives average computing times for the different steps of
the image-processing algorithm. All image-processing is
done on board by a vision module developed in our lab-
oratory which is equipped with a 20MHz Thomson T805
processor.

Table 1. Average computing time for the different steps
of the image-processing algorithm. The image size is
756×238 pixels.

Capture 0.03 s
Distortion correction, thresholding 1.82 s
Borders scanning 0.19 s
Light position calculation 0.06 s
Light orientation calculation 0.13 s
TOTAL 2.23 s

6. Conclusions and future work

In this paper, we presented a complete navigation sys-
tem that enables a mobile robot to achieve long distance
indoor navigation thanks to the lights located above its
trajectory.
In a first step, the robot builds in advance a map

of these landmarks that can be detected easily. Once
the map-building process is finished, the trajectory the
vehicle has to follow is defined above the previous map
thanks to a GUI. In the second step, the robot looks
for the lights it has learnt and fuses its new estimated
absolute pose with odometry whenever a landmark is
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Figure 5. Odometry data of the robot correcting its trajec-
tory using the detection of fluorescent lights in a corridor. (a)
Zoom on the first lights, (b)zoom on one light. Rectangles
correspond to lights and discs to their detection area. ‘+’:
light detected, ‘×’: pose correction, ‘◦’: the robot enters a
new segment.

detected during the navigation process.
Experiments show that it is possible for the robot to

navigate with precision on a long distance without any
other position or orientation sensing system than optical
encoders and a black and white camera pointing to the
ceiling.
Future work will address how to take advantage of

loops in the map that may occur during the map building
process. Because of the accumulation of odometry errors
while the robot is guided for the first time throughout
its environment, a light detected more than one time
should in any case be recorded only once in the map.
Since the pose of the light computed by the robot in a
global referential will be different whenever the vehicle
re-encounters a landmark during the learning process,
further work has to be done to cope with this issue.
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