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Abstract: In this paper, a localization method is provided estimating bias error due to multi-path phenomenon of 
DGPS sensor. In order to recognize the position of mobile robot, it is necessary data structure to integrate information 
from sensor data. To take full advantage of two sensor data, an integration mechanism is provided and implemented. 
It is provided bias detection and bias estimation for multi-path phenomenon of DGPS sensor in the surrounding of 
buildings. A performance evaluation is shown through an outdoor experiment data with Yamabico mobile robot. 
Keywords: State estimation, Kalman filter, multi-sensor, localization, data integration, bias estimation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction 
 
 There exist various sensors used to recognize the current 
position of mobile robot in an outdoor environment. 
Odometry is the most widely used method for determining 
the current position of the mobile robot. An odometric 
sensor is simple, inexpensive, and easy to implement in real 
time. The disadvantage of odometry, however, is the 
accumulation of position errors for long distance navigation. 
Differential GPS (DGPS) method has been developed to 
reduce the odometry error in real time. Nevertheless, the 
DGPS accuracy cannot be guaranteed all the time in 
environments where partial satellite occlusion and multi-
path effects between buildings can prevent normal GPS 
receiver operation. Therefore, for the autonomous navigation 
of a mobile robot, it is indispensable to consider each 
characteristic of sensors used because each sensor receives 
data with different method. It can be considered as 
registration error of mobile sensors. Data registration 
problem can be settled down by pre-processing of sensor 
data [6], [14]. In this paper, sensor data transformed from 
local coordinate reference system to global coordinate 
reference system is used as inputs of integration filter. The 
aim of this study is to understand each characteristic of 
sensor data and develop an integration structure dealing with 
those data for the localization of mobile robot in spite of 
sensor data fault. 
 Sensor data fusion is indispensable for localization of a 
mobile robot. Data fusion techniques are used to employ a 
number of sensors (which may be of different types) and to 
fuse the information from all of these sensors. Integration is 
a special form of data fusion. Various integration methods 
using dead-reckoning and external sensor have been in the 
literature [1], [12], [13]. Nebot and Durrant-Whyte [10] 
presented the design of a high-integrity navigation system 
for use in large autonomous mobile vehicles. Decentralized 
integration architecture was also presented for the fusion of 
information from different asynchronous sources. The 
integration includes a complementary fusion [1], [5], a 
centralized integration [1], and a distributed integration 

method [3], [4]. In this work, for integrating information of 
DGPS and odometric data, a complementary integration 
approach is proposed [1], [2], [10]. The used integration 
filtering method uses odometry data as system state and 
DGPS data as measurements. It needs difference between 
two sensor data as input variables of filter. The extended 
Kalman filter (EKF) [1] is used as integration filter to 
estimate sensor data error. In addition, the filtering output is 
resent to odometry system to correct robot position.  
 Even after data integration, the undesirable result may be 
obtained. This is due to multi-path phenomenon of the 
DGPS sensor [5], [9], [11]. Novoselov et al. [9] presented 
the algorithm based on the Schmidt-Kalman filter for 
mitigating the effects of residual biases on sensor attitude 
error and measurement offset and scale errors. Huang and 
Tan [8] investigated the characteristics of DGPS 
measurements under urban environments. In addition they 
proposed novel DGPS noise processing techniques to reduce 
the chances of exposing the EKF to undesirable DGPS 
measurements due to common DGPS problems such as 
blockage and multipath. When one of several sensors 
provides bad information in multi-sensor structure, the 
proposed mechanism detects a sensor fault from integrating 
result and compensates information by bias estimation. The 
used bias estimation was originated by Friedland [7]. In [7], 
the estimation mechanism is composed of two parts: bias-
free filter and bias filter. The estimation of the bias is 
decoupled from the computation of the bias-free estimate of 
the state. 
 This paper is organized as follows. In Section 2, for 
localization of mobile robot under data fault in outdoor 
environment, two different integration sensors and their 
characteristics are described. Also, a complementary 
integration structure is proposed. In Section 3, under sensor 
data fault, it is proposed an integration method with bias 
estimation to compensate bias error. Outdoor Yamabico 
robot is used to verify the proposed mechanism in Section 4. 
Section 5 concludes the paper. 
 
 



2. Outdoor Localization 
 
 For the localization of mobile robot using odometry and 
DGPS sensors, an integration mechanism taking use of 
characteristics of sensor data is needed. This section will, 
therefore, focus on the integration method of two sensors. It 
is worthwhile to note that integrated localization depends on 
characteristics of sensor data. So, the integration problem 
can be stated as how to best extract useful information from 
multiple sets of data with different characteristics being 
available.  
 
2.1. Data Characteristics of Sensors 
 First, odometry system equation as dead-reckoning and 
DGPS for the localization aid are briefly discussed, 
respectively. Odometric sensor is a positioning sensor which 
estimates both position and orientation of the mobile robot 
by integrating the measurement of driving wheel rotations. 
The robot’s position is defined as Tttttx )](  )(  )([)( θξη=  
and its error covariance is denoted as ∑ )(tP . Then, the 
robot position and its estimated error are represented as 
follows: 
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where τ  is a sampling period. v(t), )(tθ , and )(tω  is 
velocity, orientation, and angular velocity, respectively. J(t) 
is Jacobian of P(t) with respect to η , ξ , and θ . K(t) is 
Jacobian of P(t) with respect to v and θ .  
 In this work, DGPS (Trimble DSM212L) receiver is used 
as external sensor. DGPS can reduce the measurement error 
within one or several meters from original GPS data. The 
output data format is NMEA-0183 which offers a series of 
characters through a RS232C communication channel. 
Accuracy and resolution of the DGPS receiver was tested in 
the wide parking lot with the RTK-GPS. The DGPS sensor 
used in this study has data error of 30cm-50cm. Fig. 1 shows 
the DGPS sensor using in this experiment.  
 
2.2. Stochastic Modeling 
 Assuming no bias error, consider the following nonlinear 
dynamic system and measurement equations: 

)1()]1([)( −+−= kkxfkx ω , , ,2,1  L=k  (1) 
Nikkxhkz iii  , ,1       ),()]([)( L=+= υ  (2) 

where nkx ℜ∈)(  is the state vector at time k, f is a 

nonlinear function, nk ℜ∈)(ω  is the process noise, 
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ih ×ℜ∈  is the nonlinear measurement function, 
im

i k ℜ∈)(υ  is the observation noise, mmm N =++L1 , 
and N is the number of sensors. In order to obtain the 

predicted state )1|(ˆ −kkx , the nonlinear function in (1) is 
expanded in Taylor series around the latest estimate 

)1|1(ˆ −− kkx  with terms up to first order, to yield the first-
order EKF. The vector Taylor series expansion of (1) up to 
first order is 
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where HOT represents the higher-order terms and  
 )1|1(ˆ|])([)1( −−=′′∇=− kkxxxx xfkf  (4) 
is the Jacobian of the vector f evaluated with the latest 
estimate of the state. 
 
2.3. Complementary Integration without Bias Compensation 
 For integrating information of DGPS and odometric data, 
a complementary integration approach is proposed [1], [2], 
[10]. The complementary configuration is shown in Fig. 2 
[1]. According to the complementary integration scheme, the 
odometry sensor data is used as system information and 
DGPS data is used as measurements. It needs difference 
between two sensor data as input variables of filter. An 
extended Kalman filter (EKF) is used as integration filter to 
estimate sensor data error. In addition, the key in the 
suggested filter design is that filter output is resent to 
odometry system to correct robot position.  
 For the integration filtering, the covariance matrix and 
state estimate equations are as follows: 
 i) Time update (prediction)  
 )]1|1(ˆ[)1|(ˆ −−=− kkxfkkx , 
 )1()1()1|1()1()1|( −+−′−−−=− kQkfkkPkfkkP xx . (5) 
 ii) Measurement update 
 )]()()[()1|(ˆ)|(ˆ khkzkWkkxkkx x−+−= , 
 )()()()1|()|( kWkSkWkkPkkP ′−−= , (6) 

 

 
 

 

Fig. 1. DGPS experiment equipment.  
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Fig. 2. Configuration of complementary integration.  



where P(k|k) is the covariance matrix and )|(ˆ kkx  is the 
state estimate vector. jkkxxxx xhkh ),1|(ˆ|])([)( −=′′∇=  is the 
Jacobian of the vector h evaluated at the predicted state 

)1|(ˆ −kkx .  
 
2.4. Data Fault by Multi-Path Phenomenon 
 DGPS sensor provides rather accurate information for 
long distance navigation as a sensing method providing an 
absolute position value. However, this accuracy cannot be 
guaranteed all the time in environments where partial 
satellite occlusion and multipath effects between buildings 
can prevent normal GPS receiver operation. Fig. 3 shows 
data fault by multi-path of RTK-GPS in the surrounding of 
buildings. Therefore, the correct position information for 
localization of mobile robot is not provided because of fault 
error by multipath of DGPS sensor,. In this paper, this fault 
error is considered as bias error of sensor. 
 

 

3. Integration Method with Bias 
Error Compensation 

 
3.1. Problem Formulation 
 Assuming bias error in the system model and sensor 
model, the nonlinear dynamic system and measurement 
equations are as follows: 
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where nkx ℜ∈)(  is the state vector at time k, f and hi is a 

nonlinear functions, nk ℜ∈)(ω  is the process noise, 

)(kzi
imℜ∈  is the observation vector at ith local sensor, 

im
i k ℜ∈)(υ  is the observation noise, and N is the number 

of sensors. db ℜ∈⋅)(  denote constant bias vectors and enter 

linearly. dnB ×ℜ∈  and dm
i

iC ×ℜ∈  denote how to bias 
vector enters into the dynamics and sensor model. In order 
to obtain the predicted state )1|(ˆ −kkx , the nonlinear 
function in (7) is expanded in Taylor series around the latest 
estimate )1|1(ˆ −− kkx  with terms up to first order, to yield 
the first-order EKF. The vector Taylor series expansion of 
(7) up to first order is 
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where HOT represents the higher-order terms and  
 )1|1(ˆ|])([)1( −−=′′∇=− kkxxxx xfkf  (11) 
is the Jacobian of the vector f evaluated with the latest 
estimate of the state. 
 

3.2. Estimation with Bias Compensation 
 In this paper, two-stage estimator by Friedland [7] is 
used. The estimation mechanism is composed of two parts: 
bias-free filter and bias filter. The estimation of the bias is 
decoupled from the computation of the bias-free estimate of 
the state. 
A. Bias-free estimator 
 The estimation progress of bias-free filter is as 
follows: 
 1) Predict bias-free covariance matrix 
 )1()1()1|1()1()1|( −+′−−−−=− kQkfkkPkfkkP xx  
 2) Predict bias-free state estimate vector 
 )1|1(ˆ)1()1|(ˆ −−−=− kkxkfkkx x  
 3) Predict bias-free measurement 
 )1|(ˆ)()1|(ˆ −=− kkxkhkkz x  
 4) Compute bias-free Kalman gain 
 1))()()1|()()(()1|()( −+′−′−= kRkhkkPkhkhkkPkK xxxx  
 5) Update bias-free covariance matrix 
 )()()()1|()|( kKkSkKkkPkkP xx ′−−=  

where )()()1|()()( kRkHkkPkHkS +′−=  is 
covariance matrix of the innovation vector 

)1|(~ −kkz . 
 6) Receive measurement data 
 )(kz  
 7) Calculate bias-free innovation vector 
 )1|(ˆ)()1|(~ −−=− kkzkzkkz  
 8) Update bias-free estimate of state vector 
 )1|(~)()1|(ˆ)|(ˆ −+−= kkzkKkkxkkx x  
 
B. Bias estimator 
 The procedure for calculating estimate of bias filter in 
the presence of bias error is as follows [7]: 
 1) Update Ux matrix 
 )()()()( kBkVkFkU xx +=  
 2) Compute T matrix 

)()()()( kCkUkhkT xx +=  

3) Compute Vx matrix using the bias-free Kalma
n gain Kx 

 )()()()( kTkKkUkV xxx −=  
 4) Compute bias covariance matrix 

 
)1()())()1()()()(   

)1|()()(()1()1()(
1 −′−++′×

−′−−−=
− kMkTkTkMkTkRkh

kkPkhkTkMkMkM

x

xx  

 5) Compute bias Kalman gain 
 )())()()()(()( 1 kRkCkhkVkMkK xxb

−′+′′=  
6) Compute bias estimate using the bias-free 
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Fig. 3.  Multi-path result of RTK-GPS data.  



innovation vector 
 )1|(~)()1(ˆ))()(()(ˆ −+−−= kkzkKkbkTkKIkb bb  
 7) Compute bias correction 
 )(ˆ)( kbkVxk =σ  

8) Compute state estimate in the presence of bias 
error 

 )()|(ˆ)|(ˆ kkkxkkxb σ+=  
 

3.3. Complementary Integration with Bias Compensation 
 First, the integration configuration proposed in this paper 
is shown in Fig. 4. According to the suggested integration 
scheme, the odometry sensor data is used as system 
information and DGPS data is used as measurements. It 
needs difference between two sensor data as input variables 
of filter. An extended Kalman filter (EKF) is used as 
integration filter to estimate sensor data error. In addition, 
the key in the suggested filter design is that filter output is 
resent to odometry system to correct robot position. In the 
suggested filter, contrary to the standard complementary 
integration, the integration filter is used for mitigating the 
effect of biases, since there is undesirable DGPS bias error 
in DGPS problems such as multipath phenomenon under 
urban environments. The proposed mechanism detects a data 
fault from the integrated result and compensates information 
by bias estimation.  
 

 

4. Experiment and Results 
 
4.1. System Configuration 
 In order to verify the integration method proposed in 
Section 3, position data of a Yamabico robot was received in 
outdoor environment. Fig. 5 depicts a configuration of the 
hardware system including three sensors and Yamabico 
robot for outdoor experiment. The used Yamabico robot was 
manufactured for outdoor experiment. The size of two 
wheels is bigger than those of indoor Yamabico robot. Air 
pressure of these wheels has to be checked before outdoor 
experiment. 
 For the experiment take into accounting characteristic of 
sensors, the parking lots and the surrounding of 
overcrowded buildings was selected as the experiment place. 
Data acquisition time of three different sensors equipped to 
the robot is different from each other. The sampling period 
of DGPS was 1sec. The sampling period of odometric sensor 

was about 5msec. Data from each sensor were received 
using a program considering these data receiving delay. Data 
communication between two sensors and laptop computer is 
transferred via RS232C.In this paper, an RTK-GPS as a 
measure for accuracy of DGPS was used. Data acquisition of 
the DGPS & Odometric receiver was carried out from the 
parking lots to the surrounding of building with the RTK-
GPS.  
 

4.2. Experiments and Simulation 
 A comparison of data received was carried out through 
computer simulation. Data registration was implemented 
using position data obtained from outdoor experiment. 
Basically, sensor data must transform to the global 
coordinate reference system. However, sensor data is not 
always transformed in all part. According to place or 
environment, a part of data can be lost. In such case, even if 
the coordinates is transformed, it can use no information in 
the interval where data was lost. Hence, in order to take full 
advantage of information, it is necessary to integrate 
considering data fault. In the parking lots without objects to 
its surrounding, the receiving condition of DGPS sensor is 
good. But, on the contrary, in the surrounding of the 
crowded buildings, DGPS data did not provide accurate 
position data due to the multi-path effect. Fig. 6 shows the 
result integrated by the conventional complementary method 
and the proposed complementary method. In spite of 
integrating two sensor data, in the surrounding of the 
building, the conventional complementary result did not 
provide accurate position information due to the multi-path 
effect. However, in the proposed method, robot position was 
corrected using data recovered by the bias estimation when 
the DGPS data can’t be trusted. In order to detect bias error 
by the DGPS multi-path phenomena, the following 
normalized innovation square formula was used [1] 

)1|(~)()1|(~ 1 −−′ − kkrkSkkr  
where r~ denotes the innovation vector and S denotes 
covariance matrix of the innovation vector. This value is 
compared with a threshold value determined by the chi-
square distribution. In this study, for 95% probability, the 
theoretical threshold value is 7.81.   
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Fig. 6.  Comparison of the standard and proposed 
complementary method. 


