
Mobile Robot Path Drift Estimation Using Visual Streams

Helio Perroni Filho and Akihisa OHYA

Abstract— Differential Visual Streams (DiVS) is an image
processing method to quantify changes in picture sequences. It
works on monocular images captured by a single uncalibrated
camera. Experiments show DiVS provides a sound basis for an
appearance-based navigation system effective under a variety
of lighting conditions (both controlled and natural), landmark
occlusions and the presence of moving objects.

I. INTRODUCTION

Autonomous navigation is a central topic in mobile
robotics, with a number of practical applications [1], [2].
One recurrent use case is teach-replay, where a robot is
first guided through an environment (the teach step), and
must later autonomously retrace the original route (the replay
step) [3]. In the absence of measurement errors, this could
be easily achieved by recording odometry data. In practice,
however, any intrinsic localization method is subject to drift,
the unrecoverable buildup of reading errors.

Navigation methods resilient to drift usually leverage dis-
tinct environment features, otherwise known as landmarks, as
reference points relative to which more reliable localization
is possible. These can be roughly divided into map-based
and mapless, according to whether they depend on globally
consistent world representations. Map-based methods can be
further divided into metric, which represent the environment
geometrically relative to a predefined coordinate system, and
topological, which break down the world as a set of discrete
nodes connected by relations of reachability [1]. Landmark
detection was initially performed by range sensors such as
laser and ultrasound, but recent advances and wider hardware
availability have increased the appeal of video cameras for
this task [1], [4].

Visual SLAM (Simultaneous Localization and Mapping)
is a family of metric map-based navigation methods where
selected landmarks are visually tracked (usually through fea-
ture extraction and matching) and changes in their apparent
position are used to update a probabilistic representation of
robot pose. These are computationally expensive operations,
making such methods computation-driven [5]. Moreover, the
need to keep an accurate map, and precisely track robot
pose within it, have always placed an upper bound on the
geographic range of SLAM systems [6].

The complexity and limitations of metric map-based navi-
gation systems have motivated work in topological methods.

This work was supported by CNPq grant #201799/2012-0
Helio Perroni Filho is with Intelligent Robot Laboratory,

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan
helio@roboken.esys.tsukuba.ac.jp

Akihisa OHYA is with Intelligent Robot Laboratory,
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan
ohya@cs.tsukuba.ac.jp

TABLE I
SUMMARY OF SEVERAL TEACH-REPLAY VISUAL NAVIGATION METHODS

PROPOSED IN THE LITERATURE, CHARACTERIZED IN TERMS OF

EMPLOYED SENSORS, TEST ENVIRONMENTS, AND VARIATIONS

ALLOWED BETWEEN TEACH AND REPLAY STEPS.

Method Sensors Tested
Landscape Variations

Lighting Occlusion Movement

Correspondence of
vertical lines [7] Monocular camera Indoors No No No

Template matching [8] Monocular camera Indoors No No No

Average Landmark Vector [9]

360o panoramic
camera, polarized
light sensor, wheel
encoders

Simulation,
Outdoors

Yes No No

Block matching
Optical Flow [10]

360o panoramic
camera, wheel en-
coders

Indoors Yes Yes No

Feature point tracking [11] Monocular camera Indoors,
Outdoors

Yes No Yes

Mutual information
Optical Flow vectors [12] Monocular camera Indoors No Yes Yes

Stereo feature matching and
visual motion estimation [13] Stereo camera Indoors Yes Yes Yes

Local best match and
sequence recognition [14] Monocular camera Outdoors Yes Yes Yes

In particular, appearance-based navigation methods repre-
sent the world as picture sequences collected along a route,
which are later matched to live sensory input in order to
estimate current robot pose. Image comparison methods
that don’t require feature extraction and matching can be
used, lowering computation costs; representing locations as
recorded pictures is also simpler, and closer to how humans
navigate our surroundings. On the other hand thorough envi-
ronment recordings become necessary, making these methods
more data-driven.

Table I relates a number of appearance-based navigation
methods proposed over the years. They mostly differ in
how images are compared – and this is where most fall
short to wide applicability one way or another. Common
limitations include poor performance in the presence of
landmark occlusions, moving objects, or natural (outdoors)
lighting. Some methods also require non-standard hardware
(e.g. stereo vision rigs). Clearly there is still work to be
done on methods that require simple hardware such as a
single monocular camera, work well under a variety of
lighting conditions, and are resilient to occlusion and object
movement.

This article presents an appearance-based navigation sys-
tem built on Differential Visual Streams (DiVS), an im-
age processing method to represent changes in successive
landscape images as captured by an approaching observer.
Remaining sections are organized as follows. First DiVS is
described, then a procedure to quantify changes between

picture sequences, reminiscent of the multichannel neu-
ron abstract machine [15], is constructed over it. Next a
navigation control model is designed to generate steering
commands in response to such differences. Experiments
are reported, demonstrating the method’s resilience under
a range of environmental variations. Directions for further
research are discussed in the conclusion.

II. DIFFERENTIAL VISUAL STREAM

The visual stream function S(t) = It returns a snapshot
image Im×n of the field of view at time t. For a source mov-
ing towards a visually heterogeneous landscape, the frame
selection function p(t, k) = tk defines a sampling strategy
for the visual stream, such that any two subsequent sample
images are slightly different from each other. The precise
design of p(t, k) is discussed later on, but the following
properties are assumed to hold:

p(t, 0) = t (1)

p(t, k) < p(t, k + 1) (2)

m,n∑
i,j

|Ia(i, j)− Ib(i, j)| > 0

∣∣∣∣ Ia = S(p(t, k − 1))
Ib = S(p(t, k))

(3)

Combining S(t) and p(t, k) it’s possible to define a
difference image function of instantaneous changes to the
visual input:

D(t, k) = |S(p(t, k − 1))− S(p(t, k))| (4)

Where the subtraction operator is defined for images as
pixel-wise subtraction (equivalent to how matrix subtraction
is defined as cell-wise subtraction). Each difference image
will likely contain regions of high difference (corresponding
to the apparent movement of image discontinuities such as
edges) and others significantly lower (corresponding to the
inside of object surfaces). These regions can be separated into
“change” and “no change” classes, by applying a threshold
operation such as Otsu’s method [16] to the difference image.
The resulting binary difference image function is defined as:

B(t, k) = ō(D(t, k)) (5)

Where each pixel in the binary difference image B(t, k)
is 1 if the corresponding pixel in D(t, k) was above the
threshold automatically determined by Otsu’s method, and 0
otherwise.

How much each image discontinuity “moves” between
snapshots is determined by several factors. Discounting
moving objects, the larger and closer an object is, the
bigger the change it will effect on the field of view as
it is approached (conversely, the shorter and further away,
the smaller the change). Over a prolonged travel, close-by
objects – whether small or large – are soon passed by, unless
they are sizable obstacles such as corridor walls. Meanwhile,
distant objects and their discontinuities remain visible for a
long time. Therefore, changes to field of view regions can be
further characterized in terms of sustained change over a time

period, which enables limited inference over the landscape’s
structure:

• Little to no change: very far away elements such as the
sky or a distant horizon line;

• Moderate change: relatively distant, probably large ob-
jects such as buildings;

• High change: large, close obstacles such as walls.
These trends can be observed by calculating the pixel-wise

average of binary difference images over a sequence window
w:

DiV S(w, t, k) =
1

w

k∑
l=k−w+1

B(t, l) (6)

Where the differential visual stream function
DiV S(w, t, k) = Ck returns a change image Cm×n,
a quantitative representation of the changes observed in the
field of view over the time window [t, p(t, w)].

Because change images are calculated as the average over
a range of binary difference images, they attenuate, or leave
out entirely, many of the variations that complicate image
processing tasks. Changes in lighting are mostly dealt with;
moving objects are seldom registered, especially if they move
fast and remain visible for a short period relative to the time
range covered by the window; even changes to the landscape
outline can have limited effect, if they don’t substantially
affect the amount of observed change (as in the case of e.g.
closed versus open doors).

III. LANDSCAPE SHIFT

In order to use change images to quantify differences
between picture sequences, three problems still need to be
addressed:

1) How to design frame selection function p(t, k);
2) Given a teach step started at time p(tt, 0) and

completed at p(tt, n), and a replay step started
at p(tr, 0), how to select the change image from
range [DiV S(w, tt, 0), . . . , DiV S(w, tt, n)] that most
closely corresponds to change image DiV S(w, tr, k);

3) Given replay step change image DiV S(w, tr, k), and
its closest teach step correspondent DiV S(w, tt, k

′),
how to define a difference measure between them that
correlates well to robot pose.

Let’s solve the last problem first. Change images computed
from sequences collected in the same environment, but
different poses, can be compared in terms of shift – the
apparent differences in landmark position (or rather, of the
traces they left) in one change image relative to another.
Given two picture sequences A and B, if A was recorded in
a path “to the left” of the path that originated B, it is expected
that change image CA will be “right-shifted” relative to CB

– that is, features in B will be consistently found in A, but in
positions further to the right. Therefore, shift between change
images correlates to differences in robot pose. Furthermore,
mobile robots are generally assumed to drive across flat
surfaces, and in this context shift can be reduced to a 1D
problem – change images can shift “left” or “right”, but

not “up” or “down”. Accordingly, it would be convenient
to have a 1D representation of change images that simplified
horizontal shift calculation.

Such a 1D representation can be computed from a change
image as follows. First the change image is split vertically
across the middle, and the lower half is discarded. This is
done due to poor signal-to-noise ratio in the lower half of
change images, which come mostly from pictures of the
environment’s floor. Change half-images are then divided
in d columns of equal width; pixels within each column
are summed up, producing a change vector. These steps are
summarized by the change vector function:

v̂(Cm×n, d) = (vk =

m
2∑

i=1

(k+1)n
d∑

j=k n
d

C(i, j) | 0 ≤ k < d) (7)

Cross-correlation is a popular technique for determining
shift between two signals, robust to noise and quick to
compute. A normalized variation of the method [15] is
employed to compute shift between change vectors. For two
change vectors vt and vr, the windowed correlation function
WINC(e, v̂t, v̂r) is defined as:

WINC(e, v̂t, v̂r) =

d−e∑
k=0

(0̂d ∥ v̂r ⋆ v̂t[k : k + e]) ≪ k (8)

Where 0̂d is the zero vector of dimension d, the
cross-correlation operator ⋆ is defined as in [15], the
concatenation operator ∥ is defined for any two vec-
tors â = (a1, . . . , am) and b̂ = (b1, . . . , bn) such that
a ∥ b = (a1, . . . , am, b1, . . . , bn), and the left-shift operator
≪ is defined for a vector v̂ = (v1, . . . , vk, vk+1, . . . , vn)
such that v̂ ≪ k = (vk+1, . . . , vn) ∥ 0̂k.

In procedural terms, WINC(e, vt, vr) places a window of
length e over the teach vector, then calculates the normalized
cross-correlation of the whole replay vector by the contents
of the window. The window is then slided one position to
the right, and the operation repeated. At every step a new
cross-correlation coefficient vector of length d is computed.
Finally, the d− e vectors are zero-padded to dimension 2d,
left-shifted proportionally to the corresponding position of
the window over the teach vector, and summed.

A definite output must still be selected from the shift
vector. It’s possible to simply select the position of maximum
coefficient at every turn, but this might result in shift values
changing abruptly over time. A smoother alternative is to
select a initial shift, then perform iterative hill climbing over
successive shift vectors. Figure 1 illustrates the concept.

Let’s now turn to the problem of selecting a change image
from the teach step to match against the current replay
change image. First, a proper definition of what means for a
change image in the replay step to “correspond” to an image
in the teach step is required. Given the robot pose function
o(t) = (x, y, θ), the frame distance function q(tr, k, tt, k

′)
can be defined as:

q(tr, k, tt, k
′) = ∥o(p(tt, k′))− o(p(tr, k))∥ (9)

Fig. 1. Local search strategy for shift selection. The contour map shows
shift likelihood across a sequence of shift vectors. Horizontal axis is shift
vector index (k), while vertical axis is image shift in columns of width d
(p). Brighter points indicate higher likelihood. Values at p0 = 0 indicate
the likelihood of no shift, values at pl > 0 indicates likelihood of left shift
by pl columns, and pr < 0, of right shift by |pr| columns. Starting from a
global maximum at the first vector, hill climbing is performed to update the
selected shift while avoiding too much of a deviation from previous values.

The frame correspondence function c(tt, tr, k) = k′ can
then be defined as:

c(tt, tr, k) = arg min
k′∈[1,n]

q(tr, k, tt, k
′) (10)

That is, the replay change image DiV S(w, tr, k) “cor-
responds” to the teach change image in the range
[DiV S(w, tt, 1), . . . , DiV S(w, tt, n)] with the closest asso-
ciated pose. Obviously, if o(t) were reliably known at any
time, there would be no need for visual navigation in the
first place. Therefore what is required is an approximation
to q(tr, k, tt, k

′) that circumvents this requirement.
Several different strategies can be considered. The trivial

solution is to correspond change images by index:

qi(tr, k, tt, k
′) = |k − k′| (11)

This may work reasonably well if the robot is driving at
the same, constant speed in both teach and replay steps, and
images are sampled at regular intervals (which might depend
on implementation factors, such as hardware resources, or
how the underlying operating system schedules processes
and handles interruptions).

A slightly more elaborate option is to correspond change
images by acquisition time, relative to step start time:

qt(tr, k, tt, k
′) = |(p(tt, k′)− tt)− (p(tr, k)− tr)| (12)

This may work better than the previous option when
regular sampling is not guaranteed, but it still assumes a
constant speed shared across both steps.

It’s also possible to correspond change images by the
distance d(t0, t) = s traveled since the start of the step:

qd(tr, k, tt, k
′) = |d(tt, p(tt, k′))− d(tr, p(tr, k))| (13)

It may seem contradictory to employ traveled distance on
a system ostensibly meant to compensate for inaccuracies in
odometry data, but it could work if the origin location is
regularly reset – for example, every time the robot passes
key landmarks.

In the implementation and tests detailed later on the
distance-based matching strategy is used, but in fact after
several tests performed on a range of 10m to 20m, no
significant performance difference was found among the
three.

Finally, the frame selection function must be defined.
The problem is how to ensure that any two subsequent
images (S(p(t, k)), S(p(t, k + 1))) are different enough to
provide useful information, but not too different, as this
would increase noise. A simple solution is to again rely on
traveled distance, defining p(t, k) as:

p(t, k) = argmin
t′

q(k − 1) ≤ d(t′)− d(t) (14)

Where q is the minimal distance traveled by the robot
between p(t, k) and p(t, k + 1).

IV. CONTROL MODEL

Given a non-zero shift between the current replay step
change image and its teach step correspondent, steering
towards the direction opposite to the shift should reduce and
eventually eliminate it, as the robot returns to the teach path.
Empirical tests indicate image shifts (which are measured
in pixels) are numerically proportional enough to drifts
in heading direction (measured in degrees) and sideways
distance from the teach path (measured in meters), that the
later can be computed from the former merely by application
of a weighting term and cut-off limits. In more precise terms,
given a shift s measured in pixels from the center, such that
positive values represent shifts to the left and negative values,
to the right, the heading direction drift ∆θ and sideways drift
∆y are defined as:

∆θ =

 −10o if s ≤ −10
10o if s ≥ 10
so otherwise

(15)

∆y =

 −0.5m if s ≤ −50
0.5m if s ≥ 50
s

100m otherwise
(16)

Unfortunately, the task of actually steering the robot in
response to estimated drifts is complicated by the effects

(a) (b)

Fig. 2. Current change image cluttering caused by computation of
difference images over a curved path. As the robot turns in response to
a computed shift, the initially sparse replay change image (a) becomes
cluttered with changing regions that fell out of alignment with the current
sequence (b).

of curved paths on change images. As Figure 2 shows,
the moment the robot starts turning in response to a shift
estimate, the changing regions of the visual field fall out of
alignment with the ongoing sequence, cluttering the change
image. To account for this, every time the robot starts moving
in a curved path – which it will do in order to compensate
for a non-zero drift estimate – it immediately stops collecting
images. After movement has stabilized in a new straight path,
a new “time zero” for change image calculation is set, so any
images collected before that moment are ignored. Obviously
this implies the robot will “run blind” for a time, unable to
further estimate shifts until heading direction stabilizes.

V. EXPERIMENTS

A differential drive robot with a stock web camera
mounted to its front was employed in a series of experiments
to evaluate the model described above. The model was
implemented in the form of C++ library Cight. Built on top
of OpenCV, its source code is available on the web under an
Open Source license [17]. Runtime profiling shows change
image computation under Cight is remarkably fast: after the
first w difference images have been calculated, it takes a little
over 40, 000 CPU cycles (about 0.04 seconds in an 2.67GHz
Intel Core i5 processor) to compute an additional difference
image and recalculate the change image.

System parameter values (w = 25, d = 50, e = 5)
were empirically determined and used throughout all ex-
periments. Linear speed was always set to 0.3m/s, with
pictures and odometry recorded every 1.5cm on average.
Two test environments were selected in the campus of the
University of Tsukuba, henceforth referred to as “indoors”
and “outdoors”: the corridor in front of laboratory room
3D402 (the “indoors” environment) and the paved way by the
front entrance of faculty building 3L (the “outdoors” envi-
ronment). The indoors environment featured a smooth floor;
the outdoors environment’s floor was covered in tiles that
added a noticeable amount of vibration to robot movement,
but was otherwise flat.

In order to access shift measurement quality, shifts be-
tween teach step records were calculated off-line. Four
different teach steps were recorded in each environment,
all from the same start pose: one “reference” record, and
three other “test” records. Test records occasionally include
occlusions and the presence of moving elements such as
people. Additionally, in two of the test records, the robot
performed a 5o in-place turn (one to the left, another to the
right) before setting off. Despite differences such as radical
changes in lighting conditions, large bright saturation areas
due to limitations in camera hardware, and the presence
of pedestrians that further occlude landmarks seen in the
reference teach step record, shift results were remarkably
consistent with the actual relative orientation of the teach
steps.

Figure 3 shows results for these tests for the outdoors
environment. Given a reference teach step record collected
in the morning (illustrated in Fig. 3a), and three test records
collected in the afternoon, starting from exactly the same

(c)

(b)

(d)

(a)

(e)

Fig. 3. Off-line shift estimate tests on outdoors environment. Given a
reference teach step record collected in the morning (a), and three test
records collected in the afternoon, starting from exactly the same pose as
the reference record (b), or from the same pose plus a 5o in-place turn to
the left (c) or right (d), plots of shift estimates over distances from the start
(e) show that DiVS correctly estimates zero or negligible shift for the 0o

case (dotted line), where the robot is treading much the same route as in
the reference case; positive shifts for the 5o left case (solid line), where the
robot is moving away from the original path in a leftward direction; and
negative shifts for the 5o right case (dashed line).

pose as the reference record (Fig. 3b), or from the same
pose plus a 5o in-place turn to the left (Fig. 3c) or right
(Fig. 3d), plots of shift estimates over distances from the
start (Fig. 3e) show that DiVS correctly estimates zero or
negligible shift for the 0o case (where the robot is treading
much the same route as in the reference case), positive shifts
for the 5o left case (where the robot is moving away from
the original path in a leftward direction) and negative shifts

(b)

(c) (d)

(a)

(e)

Fig. 4. Off-line shift estimate tests on indoors environment. Given a
reference teach step record collected in the morning (a), and three test
records collected in the afternoon, starting from exactly the same pose as
the reference record (b), or from the same pose plus a 5o in-place turn to the
left (c) or right (d), plots of shift estimates over distances from the start (e)
show that DiVS correctly estimates zero shift for the 0o case (dotted line),
where the robot is treading much the same route as in the reference case;
positive shifts for the 5o left case (solid line), where the robot is moving
away from the original path in a leftward direction; and negative shifts for
the 5o right case (dashed line).

for the 5o right case. Likewise, Figure 4 shows test results
for the indoors environment: in this case differences between
the reference case (illustrated in Fig. 4a), and the three test
records (Fig. 4b-d) were more subtle, but as Fig. 4e shows,
overall results were not significantly different.

After the performance of the shift estimator was properly
evaluated off-line, replay steps were also performed. As the
plot in Figure 5 shows, after a teach step where the robot

Fig. 5. Results for replay tests performed before the front entrance of
building 3L. The plot shows a teach step path (the dotted line) where the
robot ran in a straight line from pose (x0, y0, θ0) = (0m, 0m, 0o) to
pose (xn, yn, θn) = (10m, 0m, 0o), and two replay paths, with initial
5o left (solid line) and right (dashed line) in-place turns to simulate drift.
Horizontal axis corresponds to the x component of robot pose, and vertical
axis, to the y component. Heading direction component θ is not shown but
can be inferred by the form of the path lines.

ran in a straight line from pose (x0, y0, θ0) = (0m, 0m, 0o)
to pose (xn, yn, θn) = (10m, 0m, 0o) (the dotted line), two
replay steps were performed, one preceded by an initial 5o

in-place turn to the left (solid line), and another by an initial
5o in-place turn to the right (dashed line). As can be seen, in
both replay steps the robot is able to detect and counteract
the differences in heading direction relative to the teach path.

VI. CONCLUSION

This article described the Differential Visual Stream
(DiVS) image processing method, which computes a graph-
ical representation of changes observed in subsequent land-
scape images captured by an approaching observer. Such
change images, when computed from sequences collected at
similar positions in the same environment, can be compared
in terms of horizontal shift. This in turn can be used to imple-
ment appearance-based navigation. Because change images
attenuate or outright erase many of the transitory differences
between images of a same landscape, robust navigation can
be achieved against changing environmental conditions.

In order to evaluate the effectiveness of DiVS as the
basis for an appearance-based navigation system, a procedure
to compute shift between change images was introduced,
as well as a control model that uses shift information to
steer a mobile robot. Experiments demonstrated the method’s
resilience to a range of environmental variations, such as
lighting changes, occlusion and the presence of moving
elements, both indoors and outdoors. In its current form
DiVS can only handle image sequences over straight paths,
making it a better match for artificial environments where
terrain is flat and turns are relatively infrequent (such as
city landscapes). Further research is required to remove this
limitation.

Tests under a wider variety of environments and visual
conditions are still required to gauge the method’s oper-
ational limits, particularly in relation to the presence of
moving objects. The question of how to set parameters
used across all three system stages (change image synthesis,
shift computation, steering control) should be concurrently

addressed: at present these are set empirically, but with the
right set of quality metrics they could be instead learned
from the environment. For example, the parameter s used to
convert image shift measurements to drift estimates could be
initialized to an arbitrary value, and then iteratively adjusted
as steering corrections either undershoot or overshoot current
image shift.

Finally, change image correspondence by traveled distance
requires a kind of sensor data (odometry) that is neither
always available, nor reliable over long ranges. Correspon-
dence by analysis of the change images themselves, or some
other visual method, would be a more portable alternative,
enabling the method to work in the absence of any sensor
data other than an image stream.

REFERENCES

[1] F. Bonin-Font, A. Ortiz, and G. Oliver, “Visual navigation for mobile
robots: A survey,” Journal of Intelligent and Robotic Systems, vol. 53,
no. 3, pp. 263–296, nov 2008.

[2] R. Arkin and R. Murphy, “Autonomous navigation in a manufacturing
environment,” Robotics and Automation, IEEE Transactions on, vol. 6,
no. 4, pp. 445–454, 1990.

[3] D. Burschka and G. Hager, “Vision-based control of mobile robots,”
in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, vol. 2, 2001, pp. 1707–1713.

[4] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 6, pp. 1052–1067, 2007.

[5] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó, “The slam problem:
A survey,” in Proceedings of the 2008 Conference on Artificial
Intelligence Research and Development: Proceedings of the 11th
International Conference of the Catalan Association for Artificial
Intelligence. IOS Press, 2008, pp. 363–371.

[6] J. A. Castellanos, J. Neira, and J. D. Tardós, “Limits to the consistency
of ekf-based slam,” in 5th IFAC Symp. on Intelligent Autonomous
Vehicles, IAV’04, 2004.

[7] T. Ohno, A. Ohya, and S. Yuta, “Autonomous navigation for mobile
robots referring pre-recorded image sequence.” in IROS. IEEE, 1996,
pp. 672–679.

[8] Y. Matsumoto, M. Inaba, and H. Inoue, “Visual navigation using view-
sequenced route representation,” 1996, pp. 83–88.

[9] D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, “A
mobile robot employing insect strategies for navigation,” Robotics and
Autonomous Systems, vol. 30, no. 1–2, pp. 39 – 64, 2000.

[10] A. Vardy and R. Möller, “Biologically plausible visual homing meth-
ods based on optical flow techniques,” Connection Science, Special
Issue: Navigation, vol. 17, pp. 47–90, 2005.

[11] Z. Chen and S. T. Birchfield, “Qualitative vision-based mobile robot
navigation,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2006.

[12] R. Stewart, M. Mills, and H. Zhang, “Visual homing for a mobile
robot using direction votes from flow vectors,” in Multisensor Fusion
and Integration for Intelligent Systems (MFI), 2012 IEEE Conference
on, Sept 2012, pp. 413–418.

[13] J. Kim, Y. Bok, and I. Kweon, “Robust vision-based autonomous
navigation against environment changes,” in IROS, 2008, pp. 696–701.

[14] M. Milford and G. Wyeth, “Seqslam : visual route-based navigation for
sunny summer days and stormy winter nights,” in IEEE International
Conferece on Robotics and Automation (ICRA 2012). IEEE, 2012,
pp. 1643–1649.

[15] H. Perroni Filho and A. F. De Souza, “On multichannel neurons, with
an application to template search,” Journal of Network and Innovative
Computing, vol. 2, no. 1, pp. 10–21, 2014.

[16] N. Otsu, “A threshold selection method from gray-level histograms,”
Systems, Man and Cybernetics, IEEE Transactions on, vol. 9, no. 1,
pp. 62–66, Jan 1979.

[17] H. Perroni Filho, “Cight,” 2014. [Online]. Available:
https://github.com/xperroni/Cight

