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Abstract— In this paper we describe a localization method
based on an inertial measurement unit (IMU) and a uniaxial
laser rangefinder suitable for use on a micro aerial vehicle
(MAV). Because it is not possible to obtain the surrounding
conditions all at once using the uniaxial rangefinder, it is
necessary to determine the position in the environment in terms
of the MAV’s own movements. We demonstrated our method
experimentally on a Quadrotor multicopter flying in a wide
area enclosed by pillars.

I. INTRODUCTION

In recent years, research on micro aerial vehicles (MAV)
has become more popular. Exploration in GPS-denied en-
vironments such as indoor areas is one such research. In
order to fly indoors, it is necessary to pass through doorways
and hallways. Taking the width of these passageways under
consideration, a MAV with a width of 30 cm or less would be
the most suitable for free flight. Figure 1 shows the estimated
relationship between the size and the flyable weight of the
MAV. Using the required wattage for each propeller, we
calculated the weight that would allow each propeller to
provide approximately 10 minutes of flight with an assumed
battery. According to this data, as the 30 cm class MAV will
weigh about 1300 g, it would not be possible to load it with
a high performance sensor. For the MAV to become a high-
performance search machine, it is necessary to miniaturize
both the mounted sensors and control devices.

Fig. 1. Maximum Load per Quadrotor size

Today, rangefinders are essential for localization and
mapping techniques such as Simultaneous Localization and
Mapping (SLAM). In terms of the miniaturization of the
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rangefinder, the main sources of the weight are the optical
system and the scanning mechanism. While the optical
system cannot be removed, if the rotation mechanism is
removed, it can still be used as a rangefinder. In consid-
ering weight reduction, for the time being, uniaxial laser
rangefinders, that are unable to rotate and can only scan in
one direction, seem to be promising. The meaning of uniaxial
is that an optical axis direction is fixed for the main body
of sensor. The authors investigated various uniaxial laser
sensors with respect to the performance of Hokuyo’s Top
URG sensor. The main sensors considered are compared in
TABLE I. I

Attempting to select a sensor based on measurement
distance and measurement period failed to uncover a suitable
sensor. Therefore, after considering diverting the signal pro-
cessing circuit from the existing URG to construct a sensor
capable of high speed measurements at a range of up to 30
m, we developed a prototype to test it (Fig.2). This time,
for the purpose of confirming this idea, we only developed
a prototype with the rotation function stopped. However, if
the rotation mechanism were to be taken out, it is expected
that a laser range finder that is around 100 g lighter can be
implemented.

The URG sensor originally reads a reference plate a set
distance away whilst scanning to calibrate its reading but
cannot do so if it cannot scan. Due to this, the output will
flux in response to the internal temperature. As such, we
considered using another object at a known distance away to
calibrate the measured value. However, the uniaxial sensor,
due to not being able to change its bearing, cannot measure
two distances. However, by using the multi-echo measure-
ment function in the URG, we succeeded in measuring the
distance to both the reference plate and the object in the
same axial direction. As the location of the reference plate
is already known, it became possible to calibrate the reading.

Fig. 2. Unaxial Laser Rangefinder



TABLE I
RANGE FINDER

Manufacturer Name Weight Range Resolution Update rate Interface
Hokuyo UTM-30LX 210g 30m 50mm 40Hz USB
Nikon COOLSHOT 165g 500m 0.5m Unknown No interface

NEWCONOPTIK LRF Mod 2 180g 2500m 1m 2Hz RS232C
Sharp GP2Y0A21YK 20g 0.8m 1mm 20Hz Analog

Parallax Laser Range Finder 50g 2.4m 1mm 1Hz Serial
SICK DT60 202g 5.3m 1.5mm 66Hz Analog

Because it is not possible to obtain the surrounding
conditions all at once with the uniaxial rangefinder, it is
necessary to determine the position of the objects in the
environment in terms of the MAV’s own movements. In
this experiment, using an Inertial Measurement Unit (IMU)
loaded onto the MAV, by combining the attitude information
and the distance information from the uniaxial rangefinder,
the MAV was able to grasp its own location. The IMU gives
the angular velocity and the acceleration while the MAV
obtains its location and attitude from the integration of the
angular velocity and acceleration. Also, while it is possible
to use the information from the laser rangefinder to discover
its own location, because the attitude information estimated
from the IMU contains integration error, it is necessary to
first minimize the errors first.

Although we wanted to solve the problem of self-
localization and mapping simultaneously, for this process,
we are handling the self-localization based upon a previously
obtained map. The method used for this is the widely used
Markov localization algorithm. However, even in the case
of the Markov localization method, in order to apply a
high likelihood for the various locations from the uniaxial
rangefinder, instead of using one round of the estimations for
localization, storing several of the attitude estimation updates
is necessary to validate the localization.

For us, the most important part that must be considered for
obtaining the environmental information is the movement of
the MAV. Because the information obtained by the uniaxial
rangefinder on its surroundings is small, it is necessary
to gather the environmental information by converting the
attitude and location of the MAV in order to obtain the
information. For that purpose, we developed a new method,
tested it, and are explaining it in this paper.

II. RELATED WORK

There is much research into the practicality of MAVs
in GPS-denied environments[1][2]. For the small MAVs,
because the payload is small, the performance of the loaded
sensor will also be low. In addition, because directly ob-
taining the odometry becomes impossible, it becomes nec-
essary to measure the attitude from the integration of the
information from the IMU. As the location measurement is
a second-order integration of the acceleration, the drift is
also large. Much research into self-localization and mapping
under such conditions exists[3]. In many studies, the MAV is
equipped with a MEMS gyro, an accelerometer, and a two-
dimensional laser scanner. After performing scan matching

using the Extended Kalman Filter (EKF) and the two-
dimensional laser, by using the SLAM algorithm[4], the
MAVs could perform self-localization and mapping. Also,
in terms of SLAM, there is research into EKF as well as
a recent study with particle filters. Furthermore, research
into calculating the location and attitude of the MAV using
a stereo camera or a monocular camera instead of the
two-dimensional laser scanner exists as well[5][6]. On the
other hand, although there are a large number of SLAM
related studies using a sensor with two-dimensional scanning
capability, research into self-localization and mapping using
a uniaxial rangefinder is exceedingly unique.

III. MAV SYSTEM

A. Quadrotor

Shown Fig.3, the MAV used for this research is a Quadro-
tor with four propellers, each with a diameter of 14 in. The
body is one meter long and one meter wide at a height
of about 0.3 m. Two pairs of propellers spin in opposite
directions to eliminate the torque reaction from the other.
The propellers spin using high torque brushless motors. A
PWM signal input Electric Speed Controller (ESC) controls
the motors. The ESC is connected to an APM 2.6 Arduino
flight controller board. Including the battery, the body weighs
around 3.0 kg. As the thrust from the propellers is roughly
4.8 kgf, it is able to handle a payload of over 1 kg.

B. Arduino microcontroller

A gyroscope, an accelerometer, a barometer, a magnetic
compass, and an ultrasonic altimeter are connected to the
APM 2.6, which controls the stabilization of the Quadrotor.

C. BeagleBoard-xM

The APM 2.6 connects to a Linux installed miniature
BeagleBoard-xM single-board computer via USB serial. The
BeagleBoard-xM carries out obstacle avoidance, navigation,
communication with ground equipment, and data collection.

D. Unaxial Laser Rangefinder

We remodeled the UTM-30LX-EW and produced the
uniaxial laser rangefinder. Because the MAVs are small and
cannot be loaded with large baggage, the ability of the
sensors that it can be equipped with, in comparison with
those that can be loaded onto ground robots, is lacking
in many ways. Furthermore, when considering the future
of MAVs, in order to penetrate deeply into narrow indoor



corridors, a necessity for even smaller MAVs can be ex-
pected. To that extent, in favor of developing a lighter laser
rangefinder, we diverted the processing circuit and the optics
system of the scanning type laser rangefinder. This sensor is
capable of a high speed sampling rate (3 ms) and a large
measurement range (30 m). This is a feature not found in
other rangefinders. It is connected to the Beagleboard-xM
via USB.

E. Inertial Measurement Unit

The Quadrotor is equipped with an Inertial Measurement
Unit for self-localization, which can obtain angles, angular
velocity, and acceleration. It connects to the Beagleboard-xM
through USB.

Fig. 3. Quadrotor system

IV. CONTROL

The Quadrotor is controlled by four inputs: pitch angle,
roll angle, yaw angle, and thrust. Shown in Fig.4, to control
the roll angle, by introducing a difference in the rotational
speed between the left and right propellers, generating a
rotational moment that causes rotation around the roll axis.
The same principle applies to the other angles. Because the
Quadrotor is an unstable system, a stabilization control must
be included. For the control, the attitude of the Quadrotor is
fed back and used in a PD control for stabilization. Using
the ultrasonic sensor, the Quadrotor can detect the altitude
and fix the height at a constant value. With this, it becomes
possible to observe the plane at which it hovers.

Fig. 4. Quadrotor control

V. LOCALIZATION

A. MONTE CARLO LOCALIZATION

The Quadrotor uses Monte Carlo Localization (MCL)
as its localization scheme. MCL is a direct application of
the Bayesian filter. The attitude of the robot cannot be
assumed to be a unimodal distribution such as a normal
distribution as it is a nonparametric filter. MCL approximates
the distribution of the attitude of the Quadrotor using a large
amount of particles. At every step, every particle undergoes
a transition based on the movement model and each cal-
culated, transitioned particle undergoes a selection process
called resampling where particles with a high likelihood are
duplicated and particles with a low likelihood are discarded.
Algorithm 1 below shows the algorithm Thrun et al.[8] used
for this process.

Algorithm 1 MCL(χt−1, ut, zt,m)
1: χ̄t = χt = ∅
2: for m = 1 to M do
3: x

[m]
t = sample motion model (ut, x

[m]
t−1)

4: w
[m]
t = measurement model (zt, x

[m]
t−1)

5: χ̄t = χ̄t+ < x
[m]
t , w

[m]
t >

6: end for
7: for m = 1 to M do
8: draw i with probablity w[i]

t

9: add x[i]t to χt

10: end for
11: return χt

Here, χt is a set of M number of attitudes x[m]
t and is be-

lieved to be an approximate representation of a collection of
particles. The sample motion model is the sampling function
for the robot’s movements and is calculated from the control
ut and the previous attitudes xt−1.

B. QUADROTOR MOTION MODEL

In order to use MCL, we must create a motion model for
the Quadrotor. The motion model for the Quadrotor using the
IMU is shown below. The Quadrotor cannot obtain odometry



nor is it equipped with a sensor to directly receive the speed.
Due to using the IMU, the robot’s own location can be found
with the strapdown inertia calculation. Figure 5 also shows
the coordinate system of the Quadrotor.

Fig. 5. Coordinate system

The relationship between Euler angles is given by:

 ϕ̇

θ̇

ψ̇

 =

 1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ

 p
q
r

 (1)

where p is the angular velocity around the x-axis, q is
the angular velocity around the y-axis, and r is the angular
velocity around the z-axis in the coordinate system fixed to
the Quadrotor.

The Euler angles can be obtained by integrating Eq.1.
However, in this case, when θ = 90deg, a discontinuity
arises, so the Euler angles cannot be used. Therefore, for
the attitude angle calculation, we use the quaternions. The
four parameters for the quaternions is related to the axial
angular velocities p, q, r by the relationships below.

ė0 = −1

2
(e1p+ e2q + e3r) (2)

ė1 =
1

2
(e0p+ e2q − e3r) (3)

ė2 =
1

2
(e0p+ e3q − e1r) (4)

ė3 =
1

2
(e0p+ e1q − e2r) (5)

Theses parameters also always satisfy the following rela-
tionship.

e20 + e21 + e22 + e23 = 1 (6)

With the above equations, we can continuously calculate
the parameters e0, e1, e2, e3. The initial value of each param-
eter can be expressed in terms of the Euler angles.
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Calculating the four parameters simultaneously, the Euler
angles can be solved using the following equations.

θ = sin−1[−2(e1e3 − e0e2)] (11)

ϕ = cos−1

[
e20 − e21 − e22 + e23√
1− 4(e1e3 − e0e2)2

]
sign[2(e2e3 + e0e1)]

(12)

ψ = cos−1

[
e20 + e21 − e22 − e23√
1− 4(e1e3 − e0e2)2

]
sign[2(e1e2 + e0e3)]

(13)
From these equations, the attitude angle of the Quadrotor
can be obtained. The accelerations u̇, v̇, ẇ can be calculated
in terms of the angular acceleration ax, ay, az , the angular
velocity p, q, r, the velocity u, v, w, and the gravitational
acceleration g values obtained from the IMU.

u̇ = ax + vr − wq + g sin θ (14)

v̇ = ay − ur + wp− g cos θ sinϕ (15)

ẇ = az − uq − vp− g cos θ cosϕ (16)

The Earth rotates around the its axis at Ω(15deg/hour).

Ω =

 Ωcosλ
0

−Ωsinλ

 (17)

Here, λ is latitude.
When the Quadrotor flies at a set speed, in regards to the

Earth, there is a new rotational movement represented by the
following equation:

ω′ =

 µ̇ cosλ

−λ̇
−µ̇sinλ

 (18)

where µ is the longitude. The angular velocity measured
by the IMU includes Ω and ω′ so the actual angular velocity
is represented by the following equation. p

q
r

 =

 p
q
r


m

−DCM [Ω+ ω′] (19)

The DCM in this equation refers to the direction cosine
matrix or the transformation matrix shown below used to



convert to the Quadrotor’s body coordinates from the inertial
coordinates.

DCM =

 cθcψ cθsψ −sθ
sθsϕcψ − sψcϕ sψsθsϕ+ cψcϕ sϕcθ
sθcϕcψ + sψsϕ sϕsθcϕ− cψsθ cϕcθ


(20)

Integrating u̇, v̇, ẇ and then transforming the result with
DCMT , we obtain VN , the northward velocity, VE , the
eastward velocity, and VD, the downward velocity in terms
of the navigation frame or the local earth frame, Ẋ

Ẏ

Ż

 =

 VN
VE
VD

 = DCMT

 u
v
w

 (21)

Integrating VN ,VE ,VD, we obtain the location in relation to
the Earth’s surface. Looking at the relationship between the
latitude λ, the longitude µ, and the height H.

λ̇ =
VN
Re

(22)

µ̇ =
VE

Re cosλ
(23)

Ḣ = −VD (24)

Here,Re is the Earth’s radius.
With this, we can calculate the Quadrotor’s coordinates on

the Earth. Regarding the above equations, by replacing the
integration with numerical integration and adding a random
perturbation to the normal distribution, we can use them as
the sample motion model. However, because the calculations
from here on are large, the actual calculations will be done
by a separate computer.

C. MEASUREMENT MODEL

For the measurement model of the uniaxial laser
rangefinder sensor, in accordance with Thrun et al.[8], we
considered small instrumentation noise, unexpected object
errors, object detection failure, and unknown random noise.

Appointing zt as the measured value with the small mea-
surement noise and the true distance as z∗t , the measurement
probability is:

phit(xt|xt,m) =

{
ηN (xt; z

∗
t , σ

2
hit) if 0 ≤ zt ≤ zmax

0 otherwise
(25)

Here, η is the normalization parameter for setting the
integration of the probability to one.

For unexpected objects, the value will undoubtedly be
detected as smaller than z∗t . This can be modeled by an
exponential distribution and is represented by the following
equation.

pshort(z
k
t |xt,m) =

{
ηλe−λshortzt if 0 ≤ zt ≤ z∗t
0 otherwise

(26)

In this case η is also the normalization parameter for setting
the integration of the probability to one again.

The measurement failure refers to, in terms of the laser
rangefinder, a situation where an object absorbs the light. If
the sensor cannot detect a distance, it will return the maxi-
mum distance. The probability for the maximum distance is
represented by:

pmax(zt|xt,m) =

{
1 if z = zmax

0 otherwise
(27)

In terms of a nonsense measurement, there are times
where the sensor will return an incomprehensible output. As
it can cross over the entire measurement range, it can be
represented by a uniform distribution.

prand(zt|xt,m) =

{
1

zmax
if 0 ≤ zt ≤ z∗t

0 otherwise
(28)

Algorithm 2 shows the algorithm for finding the likelihood
of the measurements with the above errors included.

Algorithm 2 beam range finder model(zt, xt,m)
1: compute z∗t for the measurement zt using ray casting
2: p = zhitphit(zt|xt,m) + zshortpshort(zt|xt,m)
3: +zmaxpmax(zt|xt,m) + zrandprand(zt|xt,m)
4: return p

VI. SCANNING BY MANEUVER

When using a uniaxial laser rangefinder for self-
localization and mapping, with a single measurement, only
the distance to an object in the direction the sensor is
facing is known. Therefore, unlike the scanning type laser
rangefinder, other than by matching measurement data, things
like attitude cannot be estimated. To that extent, by building
in an attitude sensor and estimating the sensor direction
from the attitude sensor’s information, we can obtain the
surrounding conditions. Accordingly, we, as shown in Fig.6,
will have the Quadrotor hover in place along the search route
at fixed time intervals and rotate around the z-axis.

Before the rotation movement is carried out, because
we do not know anything besides the distance from the
bodies in front of its travel path, although we can estimate
the distribution of every particle, in terms of the rotational
movement, the likelihood that particles will be in its actual
area increases. The distribution can then be throttled..

VII. EXPERIMENTS

The Quadrotor carried out the self-localization experiment
by measuring its environment while pivoting itself in the
air. The experiment environment is a roofed plaza in front
of the school building enclosed by pillars. As the area is
smaller than the uniaxial laser rangefinder’s measurement
range, it is possible to obtain the entirety of the area’s
circumstances with one revolution. The test machine, at 10 m
from a pillar, hovered and rotated to confirm its surroundings.



Fig. 6. Scanning by Maneuver

During the experiment, the Beagleboard-xM, loaded onto the
Quadrotor, did not perform the self-localization. Instead, it
recorded the output data from the uniaxial laser and the
IMU and afterwards, we performed the localization on a
computer using the recorded data. As the purpose of this
experiment was to verify the validity of the algorithm, we did
not perform an examination into the efficiency or the speed
of the algorithm. Also, because the amount of calculations
require was large, simultaneous self-localization would have
been difficult.

Fig. 7. Experiments Field

As shown Fig.8, in terms of the experimental results, we
understood it was roughly possible to self-localize.

VIII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We loaded a uniaxial laser rangefinder without a scanning
function and an IMU onto a Quadrotor and tested self-
localization with it. As it does not have a scanning function,
in order to self-locate, the Quadrotor itself has to move
to improve the accuracy of its self-localization. In this
experiment, in order to confirm its surroundings, every 10 m,
the Quadrotor hovers and pivots to confirms its surroundings.
The result is that we confirmed a similar self-localization
efficiency in comparison to the dead reckoning from using
the acceleration and angular velocity obtained from the IMU.
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Fig. 8. Mapped data obtained localization

B. Future Works

In the current experiment, when the Quadrotor was rotat-
ing, we observed it drawing an arc and deviating sideways
from its position. We believe that not taking the actual
balance of the body into account is the cause. Because
the disturbance from not giving much attention to location
control with the machine’s control scheme is small,, if the
location slips when at rest, steering could correct the slip.
However, because the Quadrotor changes its bearing during
rotations, manual steering is difficult. For this phenomenon,
when the machine is pivoting to confirm its surroundings,
the bearing as well as its location will have an effect on the
precision of the self-localization. Future work will focus on
building location control and rotation stabilization.

In the current experiment, we implemented manual steer-
ing but we want to aim at autonomous flight where the MAV
itself will decide the best actions.
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